The geometry of dissipation #### Asier López Gordón Instituto de Ciencias Matemáticas (ICMAT) Supervisor: Manuel de León Rodríguez Tutor: Rafael Orive Illera Programa de Doctorado en Matemáticas Universidad Autónoma de Madrid - By the Equivalence Principle, the laws of physics are the same for all observers, i.e., for all systems of coordinates. - Hence, we should formulate the laws of physics in a coordinate-independent language, namely, the language of differential geometry. Introduction 000 ## Geometric frameworks for Hamiltonian dynamics - As it is well-known, symplectic manifolds are the natural framework for Hamiltonian mechanics. - Hamiltonian dynamics are conservative: the Hamiltonian flow preserves the symplectic form and the Hamiltonian function. ## Geometric frameworks for dissipative dynamics - The ubiquity of physical phenomena where the energy or the volume of the phase space are not preserved leads to the necessity of developing frameworks for non-conservative dynamics. - In this dissertation, we consider three geometric frameworks for dissipative dynamics: - contact Hamiltonian (and Lagrangian) systems, - Hamiltonian (and Lagrangian) systems with external forces, - mechanical systems with impacts. - We have generalized several results from conservative systems to these frameworks. In particular, those results concerning symmetries, reduction and integrability. #### Section 2 ### Contact Hamiltonian systems ### Contact geometry Contact systems #### Definition A (co-oriented) **contact manifold** is a pair (M, η) , where M is an (2n+1)-dimensional manifold and η is a 1-form on M such that the map $$\flat_{\eta} \colon \mathfrak{X}(M) \to \Omega^{1}(M)$$ $X \mapsto \iota_{X} \mathrm{d}\eta + \eta(X)\eta,$ is an isomorphism of $\mathscr{C}^{\infty}(M)$ -modules. • There exists a unique vector field R on (M, η) , called the **Reeb vector field**, given by $R = \flat_n^{-1}(\eta)$, or, equivalently, $$\iota_R d\eta = 0, \ \iota_R \eta = 1.$$ ### Contact geometry • The **Hamiltonian vector field** of $f \in \mathscr{C}^{\infty}(M)$ is given by $$X_f = \flat_{\eta}^{-1}(\mathrm{d}f) - (R(f) + f)R,$$ • Around each point on M there exist **Darboux coordinates** (q^i, p_i, z) such that $$\begin{split} \eta &= \mathrm{d}z - p_i \mathrm{d}q^i, \\ R &= \frac{\partial}{\partial z}, \\ X_f &= \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z} \right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f \right) \frac{\partial}{\partial z}. \end{split}$$ ### Contact Hamiltonian systems #### Definition A **contact Hamiltonian system** is a triple (M, η, h) formed by a contact manifold (M, η) and a **Hamiltonian function** $h \in \mathscr{C}^{\infty}(M)$. • The dynamics of (M, η, h) is determined by the integral curves of the Hamiltonian vector field X_h of h w.r.t. η . ### Contact Hamiltonian systems • In Darboux coordinates, these curves $c(t) = (q^i(t), p_i(t), z(t))$ are determined by the **contact Hamilton equations**: $$egin{aligned} rac{\mathrm{d}q^i(t)}{\mathrm{d}t} &= rac{\partial h}{\partial p_i} \circ c(t)\,, \ rac{\mathrm{d}p_i(t)}{\mathrm{d}t} &= - rac{\partial h}{\partial q^i} \circ c(t) + p_i(t) rac{\partial h}{\partial z} \circ c(t)\,, \ rac{\mathrm{d}z(t)}{\mathrm{d}t} &= p_i(t) rac{\partial h}{\partial p_i} \circ c(t) - h \circ c(t)\,. \end{aligned}$$ ## Contact Lagrangian systems - The Darboux coordinate z can be regarded, from a variational point of view, as the action functional. - Let L be an action-dependent Lagrangian function. - If L is regular, the Legendre transformation leads to a contact Hamiltonian system. - ullet Very loosely, the Herglotz functional ${\cal A}$ is like the usual action functional, but instead of being given by an integral is given by the ODE $$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}[q(t)] = L\Big(q(t),\dot{q}(t),\mathcal{A}[q(t)]\Big).$$ • One seeks for curves $q: I \subseteq \mathbb{R} \to Q$ that are extremals of A. ## Contact Lagrangian systems Contact systems • Given two fixed points $q_1, q_2 \in Q$ and an interval [a, b], let $$\Omega(q_1,q_2,[a,b]) = \left\{ c \in \mathscr{C}^2([a,b] o Q) \mid c(a) = q_1, \ c(b) = q_2 ight\} \,.$$ Consider the operator $$\mathcal{Z} \colon \Omega(q_1, q_2, [a, b]) o \mathscr{C}^2([a, b] o \mathbb{R})$$ that assigns to each curve c the solution $\mathcal{Z}(c)$ of the following Cauchy problem: $$rac{\mathrm{d}\mathcal{Z}(c)(t)}{\mathrm{d}t} = L(c(t), \dot{c}(t), \mathcal{Z}(c)(t)),$$ $\mathcal{Z}(c)(a) = z_a.$ ## Contact Lagrangian systems Contact systems The Herglotz action functional is the map $$egin{aligned} \mathcal{A}\colon \Omega(q_1,q_2,[a,b]) & ightarrow \mathbb{R} \ c & ightarrow \mathcal{Z}(c)(b)\,. \end{aligned}$$ • A curve $c \in \Omega(q_1, q_2, [a, b])$ is a critical point of \mathcal{A} (i.e., $d\mathcal{A}(c) = 0$) if and only if it satisfies the Herglotz-Euler-Lagrange equations: $$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial L}{\partial v^{i}} \circ \chi(t) - \frac{\partial L}{\partial q^{i}} \circ \chi(t) - \frac{\partial L}{\partial v^{i}} \circ \chi(t) \frac{\partial L}{\partial z} \circ \chi(t) = 0,$$ $$\frac{\mathrm{d}z}{\mathrm{d}t} = L \circ \chi(t),$$ where $\chi(t) = (c(t), \dot{c}(t), z(t)).$ - In contact Hamiltonian dynamics dissipated quantities are akin to conserved quantities in symplectic dynamics. - Energy (Hamiltonian function) is no longer conserved, but dissipated in a certain manner: $$X_h(h) = -R(h)h$$. ### Example (linear dissipation) Let $M = \mathbb{R}^3$ with canonical coordinates (q, p, z), $$\eta = \mathrm{d}z - p\mathrm{d}q, \quad h = \frac{p^2}{2} + V(q) + \kappa z, \quad \kappa \in \mathbb{R}.$$ Then $X_h(h) = -\kappa h$, so $$h\circ c(t)=e^{-\kappa t}h\circ c(0)\,,$$ along an integral curve c of X_h . #### Definition Let (M, η, h) be a contact Hamiltonian system. A **dissipated quantity** is a solution $f \in \mathscr{C}^{\infty}(M)$ to the PDE $$X_h(f) = -R(h)f$$. ### Jacobi structure of a contact manifold • The **Jacobi bracket** $\{\cdot,\cdot\}$: $\mathscr{C}^{\infty}(M) \times \mathscr{C}^{\infty}(M) \to \mathscr{C}^{\infty}(M)$ is given by $$\{f,g\} = -\mathrm{d}\eta(\flat_\eta^{-1}\mathrm{d}f,\flat_\eta^{-1}\mathrm{d}g) - fR(g) + gR(f).$$ - It is a Lie bracket, namely, it is bilinear, skew-symmetric and satisfies the Jacobi identity. - It satisfies the weak Leibniz identity: $$\{f,gh\} = \{f,g\}h + \{f,h\}g - ghR(f).$$ ## Jacobi brackets and dissipated quantities The Jacobi bracket can also be expressed as follows: $$\{f,g\}=X_f(g)+gR(f).$$ #### **Proposition** Let (M, η, h) be a contact Hamiltonian system and let $f \in \mathscr{C}^{\infty}(M)$. Then, f is a dissipated quantity (i.e., $X_h(f) = -R(h)f$) iff $$\{f,h\}=0$$. ### Functions in involution #### Definition Let $\{\cdot,\cdot\}$ be a Jacobi bracket on M. A collection of functions $f_1, \ldots, f_k \in \mathscr{C}^{\infty}(M)$ are said to be **in involution** if $$\{f_i, f_i\} = 0, \quad \forall i, j \in \{1, \ldots, k\}.$$ #### Remark Unlike in the case of Poisson brackets, f_i and f_i being in involution does not imply that X_{f_i} is tangent to the level sets of f_i . Consequently, the submanifolds $$M_{\Lambda} = \bigcap_{i=1}^{k} f_i^{-1}(\Lambda_i), \quad \Lambda_i \in \mathbb{R}$$ are no longer invariant under the flows of X_{f_i}, \ldots, X_{f_k} . ## Liouville–Arnol'd theorem for contact Hamiltonian systems • Crucial idea: replace the level sets (i.e., preimages of points) M_{Λ} by preimages of rays $$M_{\langle \Lambda \rangle_+} = \{ x \in M \mid \exists r \in \mathbb{R}^+ : f_{\alpha}(x) = r\Lambda_{\alpha} \ \forall \alpha \},$$ with $$\alpha \in \{0, 1, ..., n\}$$ and $\Lambda = (\Lambda_0, \Lambda_1, ..., \Lambda_n) \in \mathbb{R}^{n+1} \setminus \{0\}$. ### Liouville–Arnol'd theorem for contact Hamiltonian systems ### Theorem (Colombo, de León, Lainz, L. G., 2023) Let (M,η) be a (2n+1)-dimensional contact manifold. Suppose that f_0, f_1, \ldots, f_n are functions in involution such that ${\rm rank}\{{\rm d}f_\alpha\}_\alpha \geq n$. Then, $M_{\langle \Lambda \rangle_+}$ is invariant by the Hamiltonian flow of f_α and diffeomorphic to $\mathbb{T}^k \times \mathbb{R}^{n+1-k}$. Moreover, there is a neighborhood U of $M_{\langle \Lambda \rangle_+}$ such that **1** There exists coordinates $(y^0, \ldots, y^n, \tilde{A}_1, \ldots, \tilde{A}_n)$ on U in which the equations of motion read $$\dot{y}^{\alpha} = \Omega^{\alpha}(\tilde{A}_i), \quad \dot{\tilde{A}}_i = 0, \quad \alpha \in \{0, \dots, n\}, i \in \{1, \dots, n\}.$$ **2** There exists a conformal change $\tilde{\eta} = \eta/A_0$ such that (y^i, \tilde{A}_i, y^0) are Darboux coordinates for $(M, \tilde{\eta})$, i.e. $\tilde{\eta} = \mathrm{d}y^0 - \tilde{A}_i \mathrm{d}y^i$. # Steps of the proof - **1** Symplectize (M, η) and f_{α} , obtaining an exact symplectic manifold (M^{Σ}, θ) and homogeneous functions in involution f_{α}^{Σ} . - Prove a Liouville-Arnold theorem for exact symplectic manifolds with homogeneous functions in involution. - **3** "Un-symplectize" the action-angle coordinates $(y_{\Sigma}^{\alpha}, A_{\alpha}^{\Sigma})$ on M^{Σ} , yielding functions (y^{α}, A_{Σ}) on M. - **4** Introduce action-angle coordinates $(y^{\alpha}, \tilde{A}_i)$ on M, where $\tilde{A}_i = -\frac{A_i}{A_{\alpha}}$. #### Example - Let $M = \mathbb{R}^3 \setminus \{0\}$ with canonical coordinates (q, p, z), and $\eta = \mathrm{d}z p\mathrm{d}q$. - The functions h = p and f = z are in involution. - We have a chart $(M \setminus \{z=0\}; y^0, y^1, \tilde{A})$, where $$y^0 = q$$, $y^1 = -\log z$ $\tilde{A} = -\frac{p}{z}$. In this chart, $$X_h = \frac{\partial}{\partial y^0}, \quad X_f = \frac{\partial}{\partial y^1}$$ • It is a Darboux chart for the contact form $$\tilde{\eta} = \frac{1}{A_0} \eta = \mathrm{d} y^0 - \tilde{A} \mathrm{d} y^1 \,.$$ # Dissipated quantities and stability In a work in progress, we employ dissipated quantities to study the stability of contact Hamiltonian systems. ### Proposition (de Lucas, L. G., Zawora) Let (M, η, h) be a contact Hamiltonian system such that $X_h(x_0) = 0$. Suppose that f_1, \ldots, f_k are dissipated quantities. If $(Rh)(x_0) > 0$ at an isolated point $x_0 \in \bigcap_{i=1}^k f_i^{-1}(0)$, then x_0 is an asymptotically stable equilibrium point. ### Cocontact structures Contact systems - We would like to model dynamical systems which are dissipative and have an explicit time dependence. - For instance, consider a friction force that changes with time. - Idea: adding explicit time dependence to contact dynamics. ### Cocontact structures ### Definition (de León, Gaset, Gràcia, Muñoz-Lecanda, and Rivas, 2022) A **cocontact manifold** is a triple (M, τ, η) such that: - **1** M is a (2n+2)-dimensional manifold, - **2** τ and η are 1-forms, - $\mathbf{0} d\tau = \mathbf{0}$. - The map $$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta_{(au,\,\eta)} \colon \mathfrak{X}(M) & ightarrow \Omega^1(M) \ X &\mapsto (\iota_X au) au + \iota_X\mathrm{d}\eta + (\iota_X\eta)\,\eta \end{aligned}$$ is an isomorphism of $\mathscr{C}^{\infty}(M)$ -modules. ### Reeb and Hamiltonian vector fields - Reeb vector fields: $R_t = \flat_{(\tau, \eta)}^{-1}(\tau), \ R_z = \flat_{(\tau, \eta)}^{-1}(\eta).$ - Hamiltonian vector field: $$X_f = \flat_{(\tau,\eta)}^{-1}(\mathrm{d}f) - (R_z(f) + f)R_z + (1 - R_t(f))R_t.$$ Darboux coordinates (t, q^i, p_i, z) : $$\begin{split} \tau &= \mathrm{d}t, \quad \eta = \mathrm{d}z - p_i \mathrm{d}q^i \,, \quad R_t = \frac{\partial}{\partial t}, \quad R_z = \frac{\partial}{\partial z} \,, \\ X_f &= \frac{\partial}{\partial t} + \frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \left(\frac{\partial f}{\partial q^i} + p_i \frac{\partial f}{\partial z}\right) \frac{\partial}{\partial p_i} + \left(p_i \frac{\partial f}{\partial p_i} - f\right) \frac{\partial}{\partial z} \,. \end{split}$$ ## Dissipation of energy #### Definition A cocontact Hamiltonian system is a tuple (M, τ, η, h) formed by a cocontact manifold (M, τ, η) and a **Hamiltonian function** $h \in \mathscr{C}^{\infty}(M)$. The energy of a cocontact Hamiltonian system is not preserved due to both the "contact variable" and the time dependence. Indeed, $$X_h(h) = -R_z(h)h + R_t(h).$$ #### Definition Let (M, τ, η, h) be a cocontact Hamiltonian system. A **dissipated quantity** is a function $f: M \to \mathbb{R}$ such that $$X_h(f) = -R_z(h)f$$. 28 ### Noether's theorem for cocontact Hamiltonian systems ### Theorem (Gaset, L. G., Rivas, 2023) Consider the cocontact Hamiltonian system (M, τ, η, h) . Let $Y \in \mathfrak{X}(M)$. - If $\eta([Y, X_h]) = 0$ and $\tau(Y) = 0$, then $f = -\eta(Y)$ is a dissipated quantity. - **2** Conversely, given a dissipated quantity f, the vector field $Y = X_f R_t$ verifies $\eta([Y, X_h]) = 0$, $\tau(Y) = 0$ and $f = -\eta(Y)$. #### Definition A generalized infinitesimal dynamical symmetry is a vector field $Y \in \mathfrak{X}(M)$ such that $\eta([Y, X_h]) = 0$ and $\tau(Y) = 0$. ## Classification of infinitesimal symmetries Generalized infinitesimal dynamical symmetries $$\tau(Y) = 0 \qquad \eta([Y, X_h]) = 0$$ Infinitesimal dynamical symmetries $$\tau(Y) = 0 [Y, X_h] = 0$$ Infinitesimal conformal Hamiltonian symmetries $$au(Y) = 0 \quad \mathcal{L}_Y \eta = \rho \eta$$ $Y(h) = \rho h$ Infinitesimal strict Hamiltonian symmetries $$T(Y) = 0$$ $\mathcal{L}_Y \eta = 0$ $Y(h) = 0$ Cartan symmetries $$\tau(Y) = 0$$ $\mathcal{L}_Y \eta = \rho \eta + dg$ $Y(h) = \rho h + gR_z(h)$ Infinitesimal conformal cocontactomorphisms $$\tau(Y) = 0$$ $$\mathcal{L}_Y \eta = \rho \eta$$ ### Example (The two-body problem with time-dependent friction) - The phase space is $\mathbb{R} \times \mathsf{T}^* \mathbb{R}^6 \times \mathbb{R}$, with coords. $(t, \mathbf{q}^1, \mathbf{q}^2, \mathbf{p}_1, \mathbf{p}_2, z)$, where $\mathbf{q}^a \in \mathbb{R}^3$ is the position of the body $a \in \{1,2\}$ and $\mathbf{p}_a \in \mathbb{R}^3$ is its momentum. - The Hamiltonian function is $$H = \frac{\|\mathbf{p}_1\|^2}{2m_1} + \frac{\|\mathbf{p}_2\|^2}{2m_2} + U(\|\mathbf{q}^2 - \mathbf{q}^1\|) + \gamma(t)z,$$ and the cocontact structure is given by the one-forms $$\eta = dz - \mathbf{p}_1 \cdot d\mathbf{q}^1 - \mathbf{p}_2 \cdot d\mathbf{q}^2, \quad \tau = dt.$$ • The vector fields $Y_i = \frac{\partial}{\partial a^1} + \frac{\partial}{\partial a^2}$, $i \in \{1, 2, 3\}$ are infinitesimal strict Hamiltonian symmetries and the associated dissipated quantities are the components of $\mathbf{p}_1 + \mathbf{p}_2$. #### Section 3 Systems with external forces ## Forced Hamiltonian systems Given a manifold Q, let T^*Q be its cotangent bundle with canonical one-form θ_Q and canonical symplectic form $\omega_Q = -\mathrm{d}\theta_Q$. #### Definition A forced Hamiltonian system is a triple (Q, h, α) where Q is a manifold, $h \in \mathscr{C}^{\infty}(\mathsf{T}^*Q)$ is a function and $\alpha \in \Omega^1(\mathsf{T}^*Q)$ is a semibasic one-form (i.e., $\alpha(X) = 0$ for any vertical vector field X). The forced Hamiltonian vector field $X_{h,\alpha} \in \mathfrak{X}(\mathsf{T}^*Q)$ is given by $$\iota_{X_h} \omega_Q = \mathrm{d}h + \alpha$$. ### Local expressions Given local coordinates (q^i) on Q and the induced bundle coordinates (q^i, p_i) on T^*Q , we have that $$\begin{split} \theta_{Q} &= p_{i} \mathrm{d}q^{i} \;, \\ \omega_{Q} &= \mathrm{d}q^{i} \wedge \mathrm{d}p_{i} \;, \\ \alpha &= \alpha_{i}(q, p) \mathrm{d}q^{i} \;, \\ X_{h,\alpha} &= \frac{\partial h}{\partial p_{i}} \frac{\partial}{\partial q^{i}} - \left(\frac{\partial h}{\partial q^{i}} + \alpha_{i}\right) \frac{\partial}{\partial p_{i}} \;. \end{split}$$ ### Reduction à la Marsden-Weinstein - Let G be a Lie group with Lie algebra g, and dual g*. - Consider a Lie group action Φ: G × Q → Q of G on a manifold Q and its cotangent lift Φ^{T*}: G × T*Q → T*Q. - Henceforth, assume that both of these actions are free and proper. ### Reduction à la Marsden-Weinstein • Let $\xi_{\mathsf{T}^*Q} \in \mathfrak{X}(\mathsf{T}^*Q)$ denote the infinitesimal generator of the action defined by $\xi \in \mathfrak{g}$, i.e., $$\xi_{\mathsf{T}^*Q}(x) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \Phi_{\exp t\xi}^{\mathsf{T}^*}(x),$$ where exp: $\mathfrak{g} \to G$ is the exponential map. • Let $J: T^*Q \to \mathfrak{g}^*$ denote the natural momentum map, namely, $$\mathbf{J}^{\xi}(x) \coloneqq \langle \mathbf{J}(x), \xi \rangle = \iota_{\xi_{\mathsf{T}^*Q}} \theta_Q(x),$$ ### Reduction à la Marsden-Weinstein #### Proposition Let (Q, h, α) be a forced Hamiltonian system such that h is Φ^{T^*} -invariant. **1** For each $\xi \in \mathfrak{g}$, the function \mathbf{J}^{ξ} is a conserved quantity iff $$\alpha(\xi_{\mathsf{T}^*Q}) = 0. \tag{1}$$ **2** If Eq. (1) holds, then α is ξ -invariant iff $$\iota_{\xi_{\mathsf{T}^*o}} \mathrm{d}\alpha = \mathbf{0}$$. 3 The subset $$\mathfrak{g}_{\alpha} = \{ \xi \in \mathfrak{g} \mid \alpha(\xi_{\mathsf{T}^*Q}) = 0, \, \iota_{\xi_{\mathsf{T}^*Q}} d\alpha = 0 \}$$ is a Lie subalgebra of g. #### Reduction à la Marsden-Weinstein - Let G_{α} be the unique connected Lie subgroup of G whose Lie algebra is \mathfrak{g}_{α} . - Assume that G_{α} is a closed Lie subgroup of G. - Let μ be a regular value of the natural momentum map $\mathbf{J}_{\alpha} \colon \mathsf{T}^* Q \to \mathfrak{g}_{\alpha}^*.$ - Denote by $G_{\alpha,\mu}\subseteq G_{\alpha}$ the isotropy subgroup of μ w.r.t. the coadjoint action. ### Reduction à la Marsden-Weinstein ### Theorem (de León, Lainz, L. G., 2021) - **1** $X_{h,\alpha}$ is tangent to $\mathbf{J}_{\alpha}^{-1}(\mu)$. - **2** $M_{\mu} := \mathbf{J}_{\alpha}^{-1}(\mu)/G_{\alpha,\mu}$ has a symplectic form ω_{μ} uniquely determined by $$\pi_{\mu}^*\omega_{\mu}=i_{\mu}^*\omega_{Q}\,,$$ where the maps $i_{\mu} \colon \mathbf{J}_{\alpha}^{-1}(\mu) \hookrightarrow \mathsf{T}^{*}Q$ and $\pi_{\mu} \colon \mathbf{J}_{\alpha}^{-1}(\mu) \to \mathbf{J}_{\alpha}^{-1}(\mu)/G_{\alpha,\mu}$ denote the inclusion and the projection, respectively. **3** We have a reduced Hamiltonian function h_{μ} and force α_{μ} on M_{μ} given by $$h_{\mu} \circ \pi_{\mu} = h \circ i_{\mu}, \quad \pi_{\mu}^* \alpha_{\mu} = i_{\mu}^* \alpha.$$ **4** There is a vector field $X_{h_{\mu}, \alpha_{\mu}} \in \mathfrak{X}(M_{\mu})$ such that $$\mathsf{T} \pi_{\mu} \circ \mathsf{X}_{\mathsf{h},\,\alpha} \circ \mathsf{i}_{\mu} = \mathsf{X}_{\mathsf{h}_{\mu},\,\alpha_{\mu}} \circ \pi_{\mu} \quad \text{and} \quad \iota_{\mathsf{X}_{\mathsf{h}_{\mu},\,\alpha_{\mu}}} \omega_{\mu} = \mathrm{d} \mathsf{h}_{\mu} + \alpha_{\mu} \,.$$ #### Section 4 ### Hybrid systems Hybrid systems anagana ### Hybrid systems #### Definition A **hybrid system** is a 4-tuple $\mathcal{H} = (M, X, S, \Delta)$, formed by - $\mathbf{0}$ a manifold M. - 2 a vector field $X \in \mathfrak{X}(M)$, - 3 a submanifold $S \subset M$ of codimension ≥ 1 (switching surface), - **4** an embedding $\Delta : S \to M$ (impact map). The dynamics generated by \mathcal{H} are the curves $c: I \subseteq \mathbb{R} \to M$ such that $$\dot{c}(t) = X(c(t)), \quad \text{if } c(t) \notin S,$$ $c^+(t) = \Delta(c^-(t)), \quad \text{if } c(t) \in S,$ where $$c^{\pm}(t) = \lim_{\tau \to t^{\pm}} c(\tau).$$ # Hybrid Hamiltonian systems #### Definition A hybrid dynamical system (M, X, S, Δ) is said to be a **hybrid Hamiltonian system** and denoted by \mathcal{H}_h if - $\mathbf{0}$ $M \subset \mathsf{T}^*Q$ is a zero-codimensional submanifold of the cotangent bundle T^*Q of a manifold Q. - **2** S projects onto a codimension-one submanifold $\pi_Q(S)$ of Q, - **4** $X = X_h$ is the Hamiltonian vector field of $h \in \mathscr{C}^{\infty}(T^*Q)$ w.r.t. ω_Q . A forced hybrid Hamiltonian system is defined analogously by replacing X_h with $X_{h,\alpha}$. # Hybrid Hamiltonian systems #### Physically, - Q represents the space of positions, - T*Q the phase space, - X_h the dynamics between the impacts, - $\pi_Q(S)$ the hypersurface where impacts occur, and - ullet Δ the change of momenta on the impacts. ### Example (The circular billiard) Consider a particle in the plane which moves freely inside the surface confined by the unit circle. occocco - The Hamiltonian is $H = \frac{p_x^2}{2} + \frac{p_y^2}{2}$. - The switching surface is $$S = \left\{ (x,y,p_x,p_y) \in \mathsf{T}^*\mathbb{R}^2 \mid x^2+y^2=1 \text{ and } (p_x,p_y) \cdot (x,y) > 0 ight\}.$$ - The condition $(p_x, p_y) \cdot (x, y) > 0$ just means that, for an impact to occur, the momenta pointing to the wall must be positive. - The impact map is $\Delta(x, y, p_x^-, p_y^-) \mapsto (x, y, p_x^+, p_y^+)$, where $$p_x^+ = p_x^- - 2(xp_x^- + yp_y^-)x,$$ $$p_y^+ = p_y^- - 2(xp_x^- + yp_y^-)y.$$ # Hybrid Lie group action #### Definition A Lie group action $\Phi \colon G \times Q \to Q$ is called a **hybrid action for** \mathscr{H}_h if its cotangent lift $\Phi^{\mathsf{T}^*} \colon G \times \mathsf{T}^*Q \to \mathsf{T}^*Q$ satisfies the following conditions: - **1** h is Φ^{T^*} -invariant, namely, $h \circ \Phi_g^{\mathsf{T}^*} = h$ for all $g \in G$, - 2 the restriction $\Phi^{T^*}|_{G\times S}$ is a Lie group action of G on S, - 3 the impact map is equivariant w.r.t. this action, i.e., $$\Delta \circ \Phi_g^{\mathsf{T}^*} \Big|_{S} = \Phi_g^{\mathsf{T}^*} \circ \Delta \,, \quad \forall \, g \in \mathcal{G} \,.$$ ### Hybrid momentum map #### Definition Let $\Phi: G \times Q \to Q$ be a hybrid action for \mathcal{H}_h . A momentum map $J: T^*Q \to \mathfrak{g}^*$ for the cotangent lift action Φ^{T^*} is called a **generalized hybrid momentum map** if, for each connected component $C \subseteq S$ and for each regular value μ_- of **J**, there is another regular value μ_+ such that $$\Delta(\mathbf{J}|_{C}^{-1}(\mu_{-})) \subset \mathbf{J}^{-1}(\mu_{+}).$$ In particular, if $\mu_- = \mu_+$ it is called a **hybrid momentum map**. A **hybrid regular value** of **J** is a regular value of both **J** and $\mathbf{J}|_{S}$. # Hybrid momentum map In other words, ${\bf J}$ is a generalized hybrid momentum map if, for every point in the connected component C of the switching surface S such that the momentum before the impact takes a value of μ_- , the momentum will take a value μ_+ after the impact. It is a hybrid momentum map if its value does not change with the impacts. #### Proposition If μ_- and μ_+ are regular values of $\mathbf J$ such that $\Delta\left(\mathbf J|_{\mathcal S}^{-1}(\mu_-)\right)\subset \mathbf J^{-1}(\mu_+)$, then the isotropy subgroups in μ_- and μ_+ coincide, that is, $G_{\mu_-}=G_{\mu_+}$. ## Hybrid reduction ### Theorem (Colombo, de León, Eyrea Irazú, L. G., 2022) Let $\Phi: G \times Q \to Q$ be a hybrid action on \mathscr{H}_h . Assume that G is connected and that $\Phi^{\mathsf{T}^*} : G \times \mathsf{T}^*Q \to \mathsf{T}^*Q$ is free and proper. Consider a sequence $\{\mu_i\}_{i\in I\subset\mathbb{N}}$ of hybrid regular values of **J**, such that $\Delta\left(\mathbf{J}|_{\mathcal{S}}^{-1}(\mu_i) ight)\subset\mathbf{J}^{-1}(\mu_{i+1}).$ Let $G_{\mu_i}=G_{\mu_0}$ be the isotropy subgroup in μ_i under the co-adjoint action. Then, the reduction leads to a sequence of reduced hybrid forced Hamiltonian systems $$\mathscr{H}_{h}^{\mu_{i}} = \left(\mathbf{J}^{-1}(\mu_{i})/G_{\mu_{0}}, X_{h_{\mu_{i}}}, \mathbf{J}|_{S}^{-1}(\mu_{i})/G_{\mu_{0}}, (\Delta)_{\mu_{i}}\right).$$ ## Integrable hybrid Hamiltonian systems - A particular case is when we have the Abelian Lie group action $\Phi \colon \mathbb{R}^n \times \mathsf{T}^*Q \to \mathsf{T}^*Q$ generated by the Hamiltonian flows of n functions f_1, \ldots, f_n in involution. - In that case, we can identify the momentum map with $F = (f_1, \dots, f_n) \colon \mathsf{T}^* Q \to \mathbb{R}^n$. - We may obtain action-angle coordinates for each time interval between impacts. The action-angle coordinates before and after the impact will be related by Δ . #### Section 5 Other results from this thesis - Let $\pi: E \to B$ is a vector bundle. - Consider a dynamical system characterized by $X \in \mathfrak{X}(E)$. - Idea: obtain a section $\gamma \in \Gamma(E)$ such that the following diagram commutes: • If $c: I \subseteq \mathbb{R} \to B$ is an integral curve of X^{γ} , then $\gamma \circ c$ is an integral curve of X. Under certain assumptions on X and γ , the diagram above is commutative iff a PDE known as the **Hamilton-Jacobi** (HJ) equation holds: • If the bundle is $\pi_Q \colon \mathsf{T}^*Q \to Q$, the vector field is a forced Hamiltonian vector field $X = X_{h,\alpha}$, and γ is a closed one-form, the HJ equation is $$\gamma^*(\mathrm{d}H + \alpha) = 0.$$ - In this dissertation we have also obtained two different HJ equations for a cocontact Hamiltonian vector field $X = X_h$ on $E = \mathbb{R} \times \mathsf{T}^* Q \times \mathbb{R}$. - In that case, one can consider two possible bundles: - We have also studied the HJ theory for hybrid systems. - Essentially, in that case one has the usual HJ equation for the continuous dynamics between impacts. - One has to impose a compatibility condition of the form $$\operatorname{Im}(\Delta \circ \gamma_i) \subset \operatorname{Im} \gamma_{i+1}$$, where γ_i is the solution of the HJ equation between the *i*-th and (i+1)-th impacts. - Discrete HJ equations can be obtained by replacing X and X^{γ} with their discrete flows. - We have obtained a discrete HJ equation for forced discrete Hamiltonian systems. # Contact Lagrangian systems with impulsive constraints - Constraints (both holonomic and nonholonomic) with discontinuities can lead to instantaneous changes on dynamical systems. - Hence, this type of constraints, called **impulsive constraints**, can also be employed to model systems with impacts. - For instance, one can think of a wall as a constraint. - Impusive constraints have been deeply studied in classical mechanics and were given a geometric interpretation in the 1990s by Lacomba and Tulczyjew, Ibort et al., and Cortés and Vinogradov. ## Contact Lagrangian systems with impulsive constraints - In this dissertation, we have extended the theory of impulsive constraints to contact Lagrangian systems. - In addition, we have proven a **Carnot theorem** for contact Lagrangian systems subject to impulsive constraints, characterizing the changes of energy due to both the contact-type dissipation and the impulsive forces. # Nonsmooth Herglotz variational principle - Let *L* be an **action-dependent** Lagrangian function. - ullet Recall that, roughly speaking, the Herglotz functional ${\mathcal A}$ is given by the ODE $$\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{A}[q(t)] = L\Big(q(t),\dot{q}(t),\mathcal{A}[q(t)]\Big).$$ - One seeks for curves $q:I\subseteq\mathbb{R}\to Q$ that are extremals of \mathcal{A} . - Usually, these curves are assumed to be at least \mathscr{C}^2 . - By considering curves that are \mathscr{C}^0 and piecewise \mathscr{C}^2 we can obtain a variational principle for systems with impacts. The impacts are precisely the points where the curve is not smooth. #### Section 6 Future work #### Future research - The Liouville–Arnol'd theorem is a first step in the study of completely integrable contact systems. - Magri et al. studied the relation between bi-Hamiltonian structures, Poisson–Nijenhuis structures and integrable systems. It seems that Jacobi-Nijenhuis structures should have an analogous relation with integrable contact systems. - We would like to find an algorithm for computing action-angle coordinates in an efficient manner. Perhaps, they are related with solutions of the HJ equation. - It is pending to consider completely integrable contact systems with critical points, i.e., non-regular values of (f_{α}) . #### Future research - Other structures employed in the study of classical integrable systems could be generalized to completely integrable contact systems: momentum polytopes, Haantjes tensors, etc. - We intend to develop a Kolmogorov–Arnol'd–Moser (KAM) theory for contact Hamiltonian systems. - We would like to study hybrid systems experiencing Zeno effect, i.e., the set of impacts is not discrete. - It is pending to explore the applicability of our results concerning hybrid systems for mathematical billiard theory. #### Publications derived from this thesis - [1] L. Colombo, M. de León, M. E. Eyrea Irazú, and A. López-Gordón. *Hamilton-Jacobi theory for nonholonomic and forced hybrid mechanical systems*. Accepted on *Geom. Mech.* arXiv: 2211.06252. - [2] L. Colombo, M. de León, M. Lainz, and A. López-Gordón. Liouville-Arnold Theorem for Contact Hamiltonian Systems. 2023. arXiv: 2302.12061. - [3] L. J. Colombo, M. de León, M. E. Eyrea Irazú, and A. López-Gordón. Generalized Hybrid Momentum Maps and Reduction by Symmetries of Forced Mechanical Systems with Inelastic Collisions. 2022. arXiv: 2112.02573. - [4] L. J. Colombo, M. de León, and A. López-Gordón. "Contact Lagrangian Systems Subject to Impulsive Constraints". J. Phys. A: Math. Theor., 55(42) (2022). - [5] M. de León, M. Lainz, and A. López-Gordón. "Symmetries, Constants of the Motion, and Reduction of Mechanical Systems with External Forces". J. Math. Phys., 62(4), p. 042901 (2021). - [6] M. de León, M. Lainz, and A. López-Gordón. "Discrete Hamilton-Jacobi Theory for Systems with External Forces". J. Phys. A: Math. Theor., 55(20) (2022). - [7] M. de León, M. Lainz, and A. López-Gordón. "Geometric Hamilton-Jacobi Theory for Systems with External Forces". J. Math. Phys., 63(2), p. 022901 (2022). Future work #### Publications derived from this thesis - [8] M. de León, M. Lainz, A. López-Gordón, and X. Rivas, "Hamilton-Jacobi Theory and Integrability for Autonomous and Non-Autonomous Contact Systems". J. Geom. Phys., 187. p. 104787 (2023). - [9] M. E. Eyrea Irazú, A. López-Gordón, M. de León, and L. J. Colombo. "Hybrid Routhian Reduction for Simple Hybrid Forced Lagrangian Systems". In: 2022 European Control Conference (ECC). 2022, pp. 345-350. - [10] J. Gaset, A. López-Gordón, and X. Rivas. "Symmetries, Conservation and Dissipation in Time-Dependent Contact Systems". Fortschritte der Phys., 71(8-9), p. 2300048 (2023). - [11] A. López-Gordón, L. Colombo, and M. de León. "Nonsmooth Herglotz Variational Principle". In: 2023 American Control Conference (ACC). 2023, pp. 3376-3381. - [12] A. López-Gordón and L. J. Colombo. On the Integrability of Hybrid Hamiltonian Systems. Accepted on the Proceedings of the 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control, 2023, arXiv: 2312,12152.