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Centre de Recerca Matemàtica, Campus de Bellaterra, Barcelona (Spain)

Introduction

Mechanical systems with external forces (also called non-conservative forces) are common
in engineering, and can also arise when certain nonholonomic systems with symmetries are
reduced.
In the Hamiltonian formalism, an external force is geometrically regarded as a semibasic
1-form α on T ∗Q, i.e.,

α = αi(q, p)dqi.

The dynamics of the forced Hamiltonian system (H,α) on T ∗Q is given by the vector field
XH,α, where

ιXH,α
ωQ = dH + α,

where ωQ = dqi ∧ dpi is the canonical symplectic structure on T ∗Q.
Similarly, in the Lagrangian formalism an external force is regarded as a semibasic 1-form α
on TQ. The dynamics of the forced Lagrangian system (L, α) is determined by the vector
field ξL,α, given by

ιξL,αωL = dEL + α,

where

ωL = dqi ∧ d

(
∂L

∂q̇i

)
, EL = q̇i

∂L

∂q̇i
− L, det

(
∂2L

∂q̇iq̇j

)
6= 0.

Definition 1 A Rayleigh force is an external force R̄ on TQ given by

R̄ = S∗(dR) =
∂R

∂q̇i
dqi,

where R is a function on TQ called the Rayleigh potential. A Rayleigh system
(L,R) is a forced Lagrangian system (L, R̄).

Symmetries and constants of the motion

Fig. 1: Classification of symmetries and their conserved quantities

Example 1 (1D Rayleigh system)
Let

L =
1

2
q̇2, R =

k

3
q̇3; X = ekq

∂

∂q
.

Then

Xc(L) = Xv(R) for X = ekq
∂

∂q
,

so X is a symmetry of the forced
Lagrangian and Xv(L) = ekqq̇ is a
constant of the motion.

Reduction

Let G be a Lie group acting on Q and consider the lifted action to TQ by tangent
prolongation. Assume the group action to be free and proper and let L be a G-invariant
Lagrangian. The momentum map J : TQ→ g∗ is given by

J(ξ) = θL(ξcQ),

where θL = S∗(dL) = ∂L
∂q̇idq

i. For each ξ ∈ g, we can define a function J ξ = J(ξ) on TQ.

Theorem 1 Consider a g-invariant forced Lagrangian system (L, α) on TQ. Let
µ ∈ g∗, and w.l.o.g. assume that OrbAd

∗
(µ) = {µ}.

i) The quotient space (TQ)µ := J−1(µ)/G is endowed with an induced symplectic
structure ωµ, given by

π∗µωµ = ι∗µωL,

where πµ : J−1(µ)→ (TQ)µ and ιµ : J−1(µ) ↪→ TQ.

ii) The reduced Lagrangian Lµ and the reduced external forced αµ are given by

Lµ ◦ πµ = L ◦ ιµ, π∗µαµ = ι∗µα.

Hamilton-Jacobi theory

T ∗Q TT ∗Q

Q TQ

XH,β

πQ TπQ

Xγ
H,β

γ

Theorem 2 Let (H, β) be a forced Hamiltonian system on TQ. Let γ be a closed
1-form on Q. Then the following conditions are equivalent:

i) d(H ◦ γ) = −γ∗β,
ii) if σ is an integral curve of Xγ

H,β, then γ ◦ σ is an integral curve of XH,β,

iii) Im γ is a Lagrangian submanifold of T ∗Q and XH,β is tangent to it.

If γ satisfies these conditions, it is called a solution of the Hamilton-Jacobi
problem for (H, β).

A map Φ : Q × Rn → T ∗Q is called complete solution of the Hamilton-Jacobi
problem for (H, β) if it is a diffeomorphism and Φλ(q) = Φ(q, λ1, . . . , λn) is a solution
of the Hamilton-Jacobi problem for (H, β).

Proposition 3 The functions fa = πa ◦ Φ−1 : T ∗Q→ R are constants of the motion.
Moreover, they are in involution, i.e., {fa, fb} = 0.

Example 2 Consider a n-dimensional forced Hamiltonian system (H, β), with

H =
1

2

n∑
i=1

p2
i , β =

n∑
i=1

κip
2
idqi.

The functions fa = eκaq
a

pa, a = 1, . . . , n are constants of the motion in involution.
The 1-form γ on Q given by

γ =

n∑
i=1

λie
−κiqidqi

is a complete solution of the Hamilton-Jacobi problem.

Remark 1 When H and β are G-invariant, we can reduce the Hamilton-Jacobi, find
solutions on Q/G and reconstruct solutions on Q from them.

Remark 2 The Hamilton-Jacobi problem for a Čaplygin system can be reduced to
the Hamilton-Jacobi problem for a forced Hamiltonian system without constraints.

Discrete forced systems
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In the discrete framework, TQ,L and α are replaced by Q×Q,Ld and fd, respectively.
Discrete Lagrange-d’Alembert principle  forced discrete Euler-Lagrange equations

Definition 2 A discrete Rayleigh force fd = (f−d , f
+
d ) is of the form

f−d (q0, q1) = D1R(q0, q1), f+
d (q0, q1) = −D2R(q0, q1),

where Rd is the so-called discrete Rayleigh potential.

Example 3 (midpoint rule discretization) Given a continuous Rayleigh poten-
tial (L,R) on TQ, with ∂R/∂q = 0, we have

L
1/2
d (q0, q1) = hL

(
q =

q0 + q1

2
, q̇ =

q1 − q0

h

)
, R

1/2
d (q0, q1) =

h

2
R

(
q̇ =

q1 − q0

h

)
,

where h is the time step.

Remark 3 We have developed a Hamilton-Jacobi theory for forced discrete systems.
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