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Introduction Hamilton-Jacobi theory

Mechanical systems with external forces (also called non-conservative forces) are common

in engineering, and can also arise when certain nonholonomic systems with symmetries are T i > TT™C)
reduced.
In the Hamiltonian formalism, an external force is geometrically regarded as a semibasic 7| | 7me T'mq
I-form o on T7Q), i.e., 3 ¥ 3
a = (g, p)dq’. Q — > TQ

The dynamics of the forced Hamiltonian system (H, ) on T*Q) is given by the vector field Theorem 2 Let (H, ) be a forced Hamiltonian system on T'Q. Let v be a closed
X H,a, Where I-form on (). Then the following conditions are equivalent:

LXH’&CUQZdH—FOé, ’i)d(HO’)/) = —y*B,

where wg = dg" A dp; is the canonical symplectic structure on T%Q).
Similarly, in the Lagrangian formalism an external force is regarded as a semibasic 1-form «
on T'Q). The dynamics of the forced Lagrangian system (L, ) is determined by the vector

i) if o 1s an integral curve of XZ] 8> then v o o s an integral curve of Xp g,

161) Im v is a Lagrangian submanifold of T*(Q) and X 5 is tangent to it.

field &7 4, given by If v satisfies these conditions, it is called a solution of the Hamailton-Jacob1
bep WL = dEL + Q, problem fOT (Ha ﬁ)
where , A map ©: @ x R" = T7() is called complete solution of the Hamilton-Jacobi
wi = dgt A d (3L> B = q@'@l}. L det ( 5’. L) 20 problem for (H, g) if it is a diffeomorphism and ®,(q) = ®(q, A1, ..., \,) is a solution
aq’ a4’ oq'¢’ of the Hamilton-Jacobi problem for (H, 3).

Definition 1A Rayleigh force is an external force It on TQ) given by Proposition 3 The functions f, = m,0 ® ' : T*Q — R are constants of the motion.
R = S*(dR) = @dqi Moreover, they are in involution, i.e., {f., fo} = 0.
oqt "’

Example 2 Consider a n-dimensional forced Hamiltonian system (H, 3), with

H = %Zp?, B =Y rpdg.
i=1 1=1

The functions f, = e™%p,, a =1,....n are constants of the motion in involution.
The 1-form v on () given by

where R is a function on T'Q) called the Rayleigh potential. A Rayleigh system
(L,R) is a forced Lagrangian system (L, R).
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Fig. 1. Classification of symmetries and their conserved quantities

Reduction

Let G be a Lie group acting on () and consider the lifted action to 7T'() by tangent
prolongation. Assume the group action to be free and proper and let L be a G-invariant
Lagrangian. The momentum map J : T'() — ¢g* is given by

) In the discrete framework, T'Q), L and « are replaced by @) x (), L; and f,;, respectively:.
J(€) = eL(fQ)’ Discrete Lagrange-d’Alembert principle ~~» forced discrete Euler-Lagrange equations

where 6 = S*(dL) = §—§dq"- For each £ € g, we can define a function J¢ = J(£) on TQ. Definition 2 A discrete Rayleigh force f;= (f;, f]) is of the form

Theorem 1 Consider a g-invariant forced Lagrangian system (L,a) on T'Q. Let f7(q0, 1) = DiR(qo, 1), [ (q0,q1) = —D2R(qo, q1),

* Ad* _
e g, and w.l.o.g. assume that Orb™® (p) = {pu}. where R, is the so-called discrete Rayleigh potential.

i) The quotient space (TQ), = J '(u)/G is endowed with an induced symplectic

structure w,, given by Example 3 (midpoint rule discretization) Given a continuous Rayleigh poten-

) ) tial (L, R) on TQ), with OR/0q = 0, we have
TWy = LWI, . B . 3
where T, : J ) — (TQ), and v, : J ) = TQ. Lcl/Z(qO, q1) = hL (q =D > Q1,q =4 - q()) , R;/Q(qo, q) = §R (cj _ 4 - C]@) ,

11) The reduced Lagrangian L, and the reduced external forced oy, are given by where h is the time step

Lyomy= Lo, T = Ly Remark 3 We have developed a Hamilton-Jacobt theory for forced discrete systems.
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