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Introduction

Mechanical systems with external forces (also called non-
conservative forces) are common in engineering, and can also
arise when certain nonholonomic systems with symmetries are
reduced.

In the Hamiltonian formalism, an external force is geometrically
regarded as a semibasic 1-form o on T*(Q), i.e.,

= az(Qap)qu
The dynamics of the forced Hamiltonian system (H, o) on T*Q)
1s given by the vector field X ,, where

Lxy wWo = dH + a,

H

where wgo = dg' A dp; is the canonical symplectic structure on
T*Q).

Similarly, in the Lagrangian formalism an external force is
regarded as a semibasic 1-form o on T'(). The dynamics of the
forced Lagrangian system (L, ) is determined by the vector
field &1, given by

Le WL = dEL + «,

where

7; 0L LOL O0°L
wr, =dq" Nd (8_(1@) : EL:qaq.Z- — L, det (aqiqj) =+ 0.

Definition 1 A Rayleigh force is an external force R on

TC) given by .

(dR) =2 744"
where R is a function on T'Q) called the Rayleigh poten-
tial. A Rayleigh system (L,R) is a forced Lagrangian

system (L, R).

Noether’s theorem

Given a vector field X = X'9/9q" on @, recall that its vertical
and complete lifts are locally given by

0 e 0 0XT0

XV = X'"— - S
0 o7 L 8 0

respectively.

Let (L, a) be a forced Lagrangian system on T'Q). Let X
be a vector field on Q). Then X“(L) = a(X°) ift X(L) is a
constant of the motion.

Corollary 1 Let (L,R) be a Rayleigh system on T(Q). Let
X be a vector field on Q. Then X¢(L) = X"(R) ff X"(L)

s a constant of the motion.

Example 1: Drag force

Consider a 1-dimensional Rayleigh system (L, R), where
1 k
2‘] ) 3q
Then
0
XY(L)=X"R) for X = ekqa—,
q

so XY(L) = e~ is a constant of the motion.

Remark 1 We have also characterized more general types
of symmetries and their assoctated constants of the motion.
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Reduction

Let G be a Lie group acting on () and consider the lifted action to T'() by tangent prolongation. Assume the group
action to be free and proper and let L be a G-invariant Lagrangian. The momentum map J : T'() — ¢g* is given by

J(§) = 0.(£5),
where 0 = S*(dL) = g{;dqi. For each & € g, we can define a function J* = J(£) on T'Q.
Lemma 1
Let (L,a) be a forced Lagrangian system on T'¢Q) and assume that L is G-invariant. Then g =

{f € g algy) =0, Legdar = O} is a Lie subalgebra such that o is g.-invariant and J¢ is a constant of the motion

for every & € g,.

Consider a g-invariant forced Lagrangian system (L, a) on T'Q. Let u € g*, and w.l.o.g. assume that Orb? (1) =

i}

i) The quotient space (T'Q), = J *(1)/G is endowed with an induced symplectic structure w,,, given by

* %
WMWM—LM

where m, : J () = (TQ), and ¢, : J Hu) = TQ.

ii) The reduced Lagrangian L, and the reduced external forced ay, are given by

Wi,

_ * o
L,om,= Loy, 0y = L,Q.
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Hamilton-Jacobi theory

T*Q RN\ \¥e

TQ T'm Q

~ X?{,ﬁ ~

Q > T'Q

Let (H, 8) be a forced Hamiltonian system on T'(Q). Let v be a closed 1-form on (). Then the following conditions
are equivalent:

) d(H o) = —7*B,
i) if o is an integral curve of X}, g, then 7 o g 1s an Integral curve of Xp g,

iii) Im ~ is a Lagrangian submanifold of 7@ and X g is tangent to it.

[f v satisfies these conditions, it is called a solution of the Hamilton-Jacobi problem for (H, [3).

A map & : Q x R" — T*(Q is called complete solution of the Hamilton-Jacobi problem for (H, ) if it is a
diffeomorphism and ®y(q) = ®(q, Ay, ..., \,) is a solution of the Hamilton-Jacobi problem for (H, 3).

The functions f, = m, 0 @' : T*@Q — R are constants of the motion. Moreover, they are in involution, i.e.,

{fcw fb} — (.

Consider a n-dimensional forced Hamiltonian system (H, §), with

H:%Zpga 522/%]?@201%’-
i=1 1=1

The functions f, = e™%p,, a =1,...,n are constants of the motion in involution. The 1-form ~ on @ given by

Y= zn: e " dg
1=1

is a complete solution of the Hamilton-Jacobi problem.

Remark 2 When H and 8 are G-invariant, we can reduce the Hamilton-Jacobi, find solutions on QQ/G and
reconstruct solutions on () from them.

Remark 3 The Hamilton-Jacobi problem for a Caplygin system can be reduced to the Hamilton-Jacobi problem
for a forced Hamiltonian system without constraints.
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