The geometry of Rayleigh dissipation

Symmetries, constants of the motion and reduction of systems with external forces

Asier López Gordón

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Supervisor: Manuel de León Tutor: Germán Sierra

July 5, 2021

July 5, 2021 1 / 2

Symplectic geometry I

- Recall that a p-form is a (0, p)-type skew-symmetric tensor field
- A 2-form ω is called symplectic if:
 - **1** it is closed ($d\omega = 0$),
 - ② it is non-degenerate ($\omega(X, Y) = 0$ ∀ $Y \in TM \Rightarrow X = 0$).
- A symplectic manifold (M, ω) is an 2*m*-dimensional manifold *M* endowed with a symplectic form ω .
- The tautological 1-form on T^*Q is given by

$$\theta = p_i \mathrm{d} q^i,$$

and the canonical symplectic form is

$$\omega = -\mathrm{d}\theta = \mathrm{d}q^i \wedge \mathrm{d}p_i.$$

Symplectic geometry II

 The interior product of a vector field X by a p-form α is the p − 1 form ι_Xα such that

$$(\iota_X\alpha)(Y_1,\ldots,Y_{p-1})=\alpha(X,Y_1,\ldots,Y_{p-1}).$$

In particular, if α is a 1-form,

$$\iota_X \alpha = \alpha(X)$$

 Consider a differentiable function f : M → ℝ on (M,ω). The Hamiltonian vector field X_f on (M,ω) is given by

$$\iota_{X_f}\omega=\mathrm{d}f.$$

 Introduction
 Hamiltonian mechanics
 Lagrangian mechanics
 Rayleigh dissipation
 Symmetries
 Reduction
 Conclusions
 References

 O
 OO
 OO
 OO
 OOO
 OO
 OO

Hamilton's equations in its intrinsic form

 The trajectories of the system are the integral curves of the vector field X_H on (T^{*}Q, ω), given by

$$\iota_{X_H}\omega=\mathrm{d}H.$$

In bundle coordinates (qⁱ, p_i), this implies that

$$X_{H} = \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}} - \frac{\partial H}{\partial q^{i}} \frac{\partial}{\partial p_{i}}.$$

• The integral curves of X_H are then given by

$$\frac{\mathrm{d}\boldsymbol{q}^{i}}{\mathrm{d}t} = \frac{\partial H}{\partial p_{i}},$$
$$\frac{\mathrm{d}\boldsymbol{p}_{i}}{\mathrm{d}t} = -\frac{\partial H}{\partial \boldsymbol{q}^{i}}.$$

Asier López Gordón (ICMAT)

Forced Hamilton's equations

• Geometrically, an external force is represented by a semibasic 1-form γ on $\mathcal{T}^*Q.$ Locally,

$$\gamma = \gamma_i(\boldsymbol{q}, \boldsymbol{p}) \, \mathrm{d} \boldsymbol{q}^i.$$

• The dynamic vector field is now $X_{H,\gamma}$, given by

$$\iota_{X_{H,\gamma}}\omega=\mathrm{d}H+\gamma.$$

• The equations of motion are then

$$\begin{aligned} \frac{\mathrm{d}\boldsymbol{q}^{i}}{\mathrm{d}t} &= \frac{\partial H}{\partial \boldsymbol{p}_{i}},\\ \frac{\mathrm{d}\boldsymbol{p}_{i}}{\mathrm{d}t} &= -\left(\frac{\partial H}{\partial \boldsymbol{q}^{i}} + \gamma_{i}\right). \end{aligned}$$

Vertical and complete lifts of a vector field

- If Q has coordinates (q^i) , it induces coordinates (q^i, \dot{q}^i) on TQ.
- Consider a vector field X on Q locally given by

$$X = X^i \frac{\partial}{\partial q^i}.$$

• Its **vertical lift** is the vector field X^{v} on TQ given by

$$X^{\nu} = X^{i} \frac{\partial}{\partial \dot{q}^{i}}.$$

Its complete lift is the vector field X^c on TQ given by

$$X^{c} = X^{i} \frac{\partial}{\partial q^{i}} + \dot{q}^{j} \frac{\partial X^{i}}{\partial q^{j}} \frac{\partial}{\partial \dot{q}^{i}}.$$

Canonical lift of a curve

• Consider the curve σ on Q given by

$$egin{aligned} \sigma &: \textit{I} \subset \mathbb{R}
ightarrow Q \ t &\mapsto (q^i(t)) \end{aligned}$$

٠

• Its canonical lift is the curve $\tilde{\sigma}$ on TQ given by

$$egin{aligned} ilde{\sigma} &: \textit{I} \subset \mathbb{R}
ightarrow \textit{TQ} \ t \mapsto (q^i(t), \dot{q}^i(t)) \end{aligned}$$

• For instance, if $\sigma(t) = (\cos(\omega t), \sin(\omega t))$, then

$$\tilde{\sigma}(t) = (\cos(\omega t), \sin(\omega t), -\omega \sin(\omega t), \omega \cos(\omega t)).$$

SODE

 A second order differential equation (SODE) is a vector field ξ on TQ of the form

$$\xi=\dot{q}^{i}rac{\partial}{\partial q^{i}}+\xi^{i}(q^{i},\dot{q}^{i})rac{\partial}{\partial \dot{q}^{i}}.$$

 A solution of a SODE ξ is a curve σ(t) = (qⁱ(t)) on Q such that σ̃ is an integral curve of ξ, given by the second order differential equations

$$\frac{\mathrm{d}^2 q^i}{\mathrm{d}t^2} = \xi^i \left(q^i, \frac{\mathrm{d}q^i}{\mathrm{d}t} \right), \quad 1 \le i \le n = \dim Q.$$

Symplectic structure on TQ induced by the Lagrangian

- Consider a Lagrangian function L on TQ.
- The Poincaré-Cartan forms are given by

$$\begin{aligned} \alpha_L &= \frac{\partial L}{\partial \dot{q}^i} \mathrm{d} q^i, \\ \omega_L &= -\mathrm{d} \alpha_L = \frac{\partial^2 L}{\partial q^i \partial \dot{q}^i} \mathrm{d} q^i \wedge \mathrm{d} q^j + \frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^j} \mathrm{d} q^i \wedge \mathrm{d} \dot{q}^j. \end{aligned}$$

• *L* is called **regular** if ω_L is symplectic.

Euler-Lagrange equations in its intrinsic form

• The energy of the system is

$$E_L = \Delta(L) - L, \qquad \Delta = \dot{q}^i \frac{\partial}{\partial \dot{q}^i}.$$

 The dynamics of the system is determined by the Euler-Lagrange vector field ξ_L, given by

$$\iota_{\xi_L}\omega_L = \mathrm{d}E_L$$

• ξ_L is a SODE and its solutions satisfy the Euler-Lagrange equations

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = 0, \quad 1 \leq i \leq n.$$

Forced Euler-Lagrange equations

• An external force is represented by a semibasic 1-form β on TQ. Locally,

$$\beta = \beta_i(q, \dot{q}) \, \mathrm{d}q^i.$$

The dynamics is now determined by the forced Euler-Lagrange vector field ξ_{L,β}, given by

$$\iota_{\xi_{L,\beta}}\omega_{L}=\mathrm{d}E_{L}+\beta.$$

• $\xi_{L,\beta}$ is also a SODE, with solutions given by

$$\frac{\mathrm{d}}{\mathrm{d}t}\left(\frac{\partial L}{\partial \dot{q}^{i}}\right) - \frac{\partial L}{\partial q^{i}} = -\beta_{i}, \quad 1 \leq i \leq n.$$

Rayleigh's hypothesis

• Rayleigh considered an external force which is linear in the velocities:

$$ar{R} = R_{ij}(q) \dot{q}^i \mathrm{d} q^j, \qquad R_{ij} = R_{ji}.$$

• We can introduce the Rayleigh dissipation function:

$$\mathcal{R}=rac{1}{2}R_{ij}(q)\dot{q}^{i}\dot{q}^{j},$$

so that

$$\bar{R} = rac{\partial \mathcal{R}}{\partial \dot{q}^i} \mathrm{d}q^i.$$

Generalized Rayleigh dissipation

- We can consider a "potential" R on TQ (not necessarily quadratic in the velocities), from which an external force is derived.
- \mathcal{R} expresses the energy dissipated away by the system:

$$\frac{\mathrm{d}}{\mathrm{d}t}E_L\circ\sigma(t)=-\Delta(\mathcal{R})\circ\sigma(t),$$

with σ an integral curve of $\xi_{L,\bar{R}}$.

Noether theorem

Theorem (Noether's theorem for forced Lagrangian systems)

Let X be a vector field on Q. Then $X^{c}(L) = \beta(X^{c})$ if and only if $X^{v}(L)$ is a constant of the motion.

- A vector field X on Q satisfying these conditions is called a symmetry of the forced Lagrangian (L, β).
- For a Rayleigh system (L, \mathcal{R}) , this is equivalent to

 $X^{c}(L) = X^{v}(\mathcal{R}).$

Other point-like symmetries I

- We want to consider other infinitesimal transformations on Q that leave the system (L, β) invariant.
- A Lie symmetry is a vector field X on Q such that

$$[X^{c},\xi_{L,\beta}]=\mathcal{L}_{X^{c}}\xi_{L,\beta}=0$$

• A Noether symmetry is a vector field X on Q such that

$$\mathcal{L}_{X^c}\alpha_L = \mathrm{d}f, \qquad X^c(E_L) + \beta(X^c) = 0.$$

• If $\mathcal{L}_{X^c}\alpha_L = df$, then X is a Noether symmetry if and only if $f - X^v(L)$ is a conserved quantity.

Other point-like symmetries II

 For a Rayleigh system (L, R), if L_{X^c}α_L = df, then X is a Noether symmetry if and only if

$$X^{c}(E_{L})+X^{v}(\mathcal{R})=0.$$

- If X is a Noether symmetry, it is also a symmetry of the forced Lagrangian if and only if $\mathcal{L}_{X^c}\alpha_L = 0$.
- If X is a Noether symmetry, it is also a Lie symmetry if and only if

$$\iota_{\mathbf{X}^{c}}\mathrm{d}\beta=\mathbf{0}.$$

Non-point-like symmetries I

- We want to consider infinitesimal transformations on TQ that leave the system (L, β) invariant.
- A vector field \tilde{X} on TQ is called a **dynamical symmetry** if

$$[\tilde{X},\xi_{L,\beta}]=0.$$

• A vector field \tilde{X} on TQ is called a **Cartan symmetry** if

$$\mathcal{L}_{\tilde{X}} \alpha_L = \mathrm{d}f, \qquad \tilde{X}(E_L) + \beta(\tilde{X}) = 0$$

- X is a Lie symmetry if and only if X^c is a dynamical symmetry.
- X is a Noether symmetry if and only if X^c is a Cartan symmetry.

Non-point-like symmetries II

• If $\mathcal{L}_{\tilde{X}} \alpha_L$ is closed, then \tilde{X} is a dynamical symmetry if and only if

$$\mathrm{d}(\tilde{X}(E_L)) = -\mathcal{L}_{\tilde{X}}\beta.$$

A Cartan symmetry is a dynamical symmetry if and only if

$$\iota_{\tilde{X}} \mathrm{d}\beta = \mathbf{0}.$$

- If $\mathcal{L}_{\tilde{X}} \alpha_L = df$, then \tilde{X} is a Cartan symmetry if and only if $f (S\tilde{X})(L)$ is a constant of the motion.
- For a Rayleigh system (L, \mathcal{R}) , \tilde{X} is a Cartan symmetry if and only if

$$\tilde{X}(E_L) + (S\tilde{X})(\mathcal{R}) = 0.$$

Momentum map

- Consider a G-invariant regular Lagrangian L on TQ, where G is a Lie group with Lie algebra g and dual Lie algebra g^{*}.
- The natural momentum map is given by

$$J: TQ o \mathfrak{g}^*$$

 $\langle J(x), \xi
angle = lpha_L(\xi_Q^c)$

for each $\xi \in \mathfrak{g}$.

• For each $\xi \in \mathfrak{g}$,

$$egin{aligned} J^{\xi} &\colon TQ o \mathbb{R} \ & x \mapsto \langle J(x), \xi
angle \end{aligned}$$

is a function on TQ.

July 5, 2021 19 / 2

Group actions and quotient manifold

- Idea: reducing the dimensions of *TQ* (i.e., taking out redundant d.o.f.) when *L* is *G*-invariant.
- The group action $\Phi: G \times M \rightarrow M$ on a manifold M needs to be
 - **1** free: for every $x \in M$, $\Phi_g(x) = x$ if and only if $g = id_G$,
 - **2 proper**: for any compact subset $K \subset M$, $\Phi^{-1}(K)$ is also compact.
- Equivalence relation: $x \sim y$ if $\exists g \in G$ such that $\Phi(g, x) = y$.
- The orbit of x and the orbit space are

$$[x] = \{y \in M \mid y \sim x\}, \qquad M/G = \{[x] \mid x \in M\},\$$

respectively,

• Φ smooth, free and proper $\implies M/G$ is a differentiable manifold of dimension dim M – dim G.

Lemma

Consider a forced Lagrangian system (L, β) . Let $\xi \in \mathfrak{g}$. Then 1 J^{ξ} is a conserved quantity if and only if

 $\beta(\xi_Q^c) = 0.$

 ${m extsf{0}}$ If the previous equation holds, then ξ leaves eta invariant if and only if

 $\iota_{\xi_Q^c} \mathrm{d}\beta = \mathbf{0}.$

In addition, the vector subspace of ${\mathfrak g}$ given by

$$\mathfrak{g}_{eta} = \left\{ \xi \in \mathfrak{g} \mid eta(\xi_Q^c) = 0, \; \iota_{\xi_Q^c} \mathrm{d}eta = 0
ight\}$$

is a Lie subalgebra of \mathfrak{g} .

Isotropy group

- J^{ξ} is a constant of the motion $\forall \xi \in \mathfrak{g}_{\beta} \Rightarrow J_{\beta}^{-1}(\mu)$ is left invariant by the flow of $\xi_{L,\beta}$.
- Therefore the integral curves of $\xi_{L,\beta}$ are contained in level sets $J_{\beta}^{-1}(\mu) \subset TQ$.
- The isotropy Lie algebra at $\mu \in \mathfrak{g}_{\beta}^{*}$ is

$$(\mathfrak{g}_{eta})_{\mu} = \{\xi \in \mathfrak{g}_{eta} \mid \langle \mu, [\xi, \eta] \rangle = \mathsf{0} \,\, \forall \eta \in \mathfrak{g}_{eta} \} \,.$$

• $(G_{\beta})_{\mu} \leq G$ is the Lie group generated by $(\mathfrak{g}_{\beta})_{\mu}$.

Theorem

Consider a \mathfrak{g}_{β} -invariant forced Lagrangian system (L,β) on TQ. Let $\mu \in \mathfrak{g}_{\beta}^*$. Then:

• The quotient space $(TQ)_{\mu} := J_{\beta}^{-1}(\mu)/(G_{\beta})_{\mu}$ is endowed with an induced symplectic structure ω_{μ} , given by

$$\pi^*_{\mu}\omega_{\mu}=i^*_{\mu}\omega_L,$$

where $\pi_{\mu} : J_{\beta}^{-1}(\mu) \to (TQ)_{\mu}$ and $i_{\mu} : J_{\beta}^{-1}(\mu) \hookrightarrow TQ$. The reduced Lagrangian L_{μ} is given by

$$L_{\mu} \circ \pi_{\mu} = L \circ i_{\mu}.$$

 ${f S}$ The reduced external force eta_μ is given by

$$\pi^*_{\mu}\beta_{\mu}=i^*_{\mu}\beta.$$

Main results

- **1** Generalization of Noether's theorem for forced Lagrangian systems.
- 9 Study and classification of symmetries for forced mechanical systems.
- Oevelopment of a reduction theory for forced Lagrangian systems.
- Geometric description of Rayleigh forces, particularizing the results above.

Future work

- 1 Extension of the results to higher-order systems: $L(q, \dot{q}, \ddot{q}, \dots, q^{(k)})$ on $T^k Q$.
- **2** Extension of the results to non-autonomous systems: $L(q, \dot{q}, t)$ on $TQ \times \mathbb{R}$.
- 8 Hamilton-Jacobi theory:

$$H\left(q^{i},\frac{\partial W}{\partial q^{i}}\right) = E \Leftrightarrow (\mathrm{d}W^{*})H = E$$

Oiscrete mechanics and geometric integrators.

Main references

- R. Abraham and J. Marsden, Foundations of Mechanics. AMS Chelsea Pub., 2008, ISBN: 978-0-8218-4438-0.
- M. de León, M. Lainz, and A. López-Gordón, *Geometric Hamilton-Jacobi theory for systems with external forces and discretization*, Under preparation, 2021.

——, "Symmetries, constants of the motion, and reduction of mechanical systems with external forces," *J. Math. Phys.*, vol. 62, no. 4, p. 042 901, 2021.

M. de León and P. R. Rodrigues, *Methods of differential geometry in analytical mechanics*. North-Holland, 1989, ISBN: 978-0-444-88017-8.

Thanks for your attention!

Asier López Gordón (ICMAT)

The geometry of Rayleigh dissipation

July 5, 2021 27 / 27