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Symplectic geometry I

• Recall that a p-form is a (0, p)-type skew-symmetric tensor field
• A 2-form ω is called symplectic if:

1 it is closed (dω=0),
2 it is non-degenerate (ω(X ,Y ) = 0 ∀Y ∈ TM ⇒ X = 0).

• A symplectic manifold (M, ω) is an 2m-dimensional manifold M
endowed with a symplectic form ω.
• The tautological 1-form on T ∗Q is given by

θ = pidqi ,

and the canonical symplectic form is

ω = −dθ = dqi ∧ dpi .
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Symplectic geometry II

• The interior product of a vector field X by a p-form α is the p − 1
form ιXα such that

(ιXα)(Y1, . . . ,Yp−1) = α(X ,Y1, . . . ,Yp−1).

In particular, if α is a 1-form,

ιXα = α(X )

• Consider a differentiable function f : M → R on (M, ω). The
Hamiltonian vector field Xf on (M, ω) is given by

ιXf ω = df .
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Hamilton’s equations in its intrinsic form
• The trajectories of the system are the integral curves of the vector
field XH on (T ∗Q, ω), given by

ιXHω = dH.

• In bundle coordinates (qi , pi ), this implies that

XH = ∂H
∂pi

∂

∂qi −
∂H
∂qi

∂

∂pi
.

• The integral curves of XH are then given by

dqi

dt = ∂H
∂pi

,

dpi
dt = −∂H

∂qi .
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Forced Hamilton’s equations

• Geometrically, an external force is represented by a semibasic 1-form
γ on T ∗Q. Locally,

γ = γi (q, p) dqi .

• The dynamic vector field is now XH,γ , given by

ιXH,γω = dH + γ.

• The equations of motion are then

dqi

dt = ∂H
∂pi

,

dpi
dt = −

(
∂H
∂qi + γi

)
.
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Vertical and complete lifts of a vector field

• If Q has coordinates (qi ), it induces coordinates (qi , q̇i ) on TQ.
• Consider a vector field X on Q locally given by

X = X i ∂

∂qi .

• Its vertical lift is the vector field X v on TQ given by

X v = X i ∂

∂q̇i .

• Its complete lift is the vector field X c on TQ given by

X c = X i ∂

∂qi + q̇j ∂X i

∂qj
∂

∂q̇i .
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Canonical lift of a curve

• Consider the curve σ on Q given by

σ : I ⊂ R→ Q
t 7→ (qi (t)).

• Its canonical lift is the curve σ̃ on TQ given by

σ̃ : I ⊂ R→ TQ
t 7→ (qi (t), q̇i (t)).

• For instance, if σ(t) = (cos(ωt), sin(ωt)), then

σ̃(t) = (cos(ωt), sin(ωt),−ω sin(ωt), ω cos(ωt)).
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SODE

• A second order differential equation (SODE) is a vector field ξ on
TQ of the form

ξ = q̇i ∂

∂qi + ξi (qi , q̇i ) ∂

∂q̇i .

• A solution of a SODE ξ is a curve σ(t) = (qi (t)) on Q such that σ̃ is
an integral curve of ξ, given by the second order differential equations

d2qi

dt2 = ξi
(
qi ,

dqi

dt

)
, 1 ≤ i ≤ n = dimQ.
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Symplectic structure on TQ induced by the Lagrangian

• Consider a Lagrangian function L on TQ.
• The Poincaré-Cartan forms are given by

αL = ∂L
∂q̇i dqi ,

ωL = −dαL = ∂2L
∂qj∂q̇i dqi ∧ dqj + ∂2L

∂q̇i∂q̇j dqi ∧ dq̇j .

• L is called regular if ωL is symplectic.
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Euler-Lagrange equations in its intrinsic form

• The energy of the system is

EL = ∆(L)− L, ∆ = q̇i ∂

∂q̇i .

• The dynamics of the system is determined by the Euler-Lagrange
vector field ξL, given by

ιξLωL = dEL

• ξL is a SODE and its solutions satisfy the Euler-Lagrange equations

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi = 0, 1 ≤ i ≤ n.
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Forced Euler-Lagrange equations

• An external force is represented by a semibasic 1-form β on TQ.
Locally,

β = βi (q, q̇) dqi .

• The dynamics is now determined by the forced Euler-Lagrange
vector field ξL,β, given by

ιξL,βωL = dEL + β.

• ξL,β is also a SODE, with solutions given by

d
dt

(
∂L
∂q̇i

)
− ∂L
∂qi = −βi , 1 ≤ i ≤ n.
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Rayleigh’s hypothesis

• Rayleigh considered an external force which is linear in the velocities:

R̄ = Rij(q)q̇idqj , Rij = Rji .

• We can introduce the Rayleigh dissipation function:

R = 1
2Rij(q)q̇i q̇j ,

so that
R̄ = ∂R

∂q̇i dqi .
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Generalized Rayleigh dissipation

• We can consider a “potential” R on TQ (not necessarily quadratic in
the velocities), from which an external force is derived.
• R expresses the energy dissipated away by the system:

d
dt EL ◦ σ(t) = −∆(R) ◦ σ(t),

with σ an integral curve of ξL,R̄ .
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Noether theorem

Theorem (Noether’s theorem for forced Lagrangian systems)

Let X be a vector field on Q. Then X c(L) = β(X c) if and only if X v (L) is
a constant of the motion.

• A vector field X on Q satisfying these conditions is called a
symmetry of the forced Lagrangian (L, β).
• For a Rayleigh system (L,R), this is equivalent to

X c(L) = X v (R).
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Other point-like symmetries I

• We want to consider other infinitesimal transformations on Q that
leave the system (L, β) invariant.
• A Lie symmetry is a vector field X on Q such that

[X c , ξL,β] = LX c ξL,β = 0

• A Noether symmetry is a vector field X on Q such that

LX cαL = df , X c(EL) + β(X c) = 0.

• If LX cαL = df , then X is a Noether symmetry if and only if
f − X v (L) is a conserved quantity.
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Other point-like symmetries II

• For a Rayleigh system (L,R), if LX cαL = df , then X is a Noether
symmetry if and only if

X c(EL) + X v (R) = 0.

• If X is a Noether symmetry, it is also a symmetry of the forced
Lagrangian if and only if LX cαL = 0.
• If X is a Noether symmetry, it is also a Lie symmetry if and only if

ιX c dβ = 0.
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Non-point-like symmetries I

• We want to consider infinitesimal transformations on TQ that leave
the system (L, β) invariant.
• A vector field X̃ on TQ is called a dynamical symmetry if

[X̃ , ξL,β] = 0.

• A vector field X̃ on TQ is called a Cartan symmetry if

LX̃αL = df , X̃ (EL) + β(X̃ ) = 0

• X is a Lie symmetry if and only if X c is a dynamical symmetry.
• X is a Noether symmetry if and only if X c is a Cartan symmetry.
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Non-point-like symmetries II

• If LX̃αL is closed, then X̃ is a dynamical symmetry if and only if

d(X̃ (EL)) = −LX̃β.

• A Cartan symmetry is a dynamical symmetry if and only if

ιX̃ dβ = 0.

• If LX̃αL = df , then X̃ is a Cartan symmetry if and only if
f − (SX̃ )(L) is a constant of the motion.
• For a Rayleigh system (L,R), X̃ is a Cartan symmetry if and only if

X̃ (EL) + (SX̃ )(R) = 0.
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Momentum map

• Consider a G-invariant regular Lagrangian L on TQ, where G is a Lie
group with Lie algebra g and dual Lie algebra g∗.
• The natural momentum map is given by

J : TQ → g∗

〈J(x), ξ〉 = αL(ξc
Q)

for each ξ ∈ g.
• For each ξ ∈ g,

Jξ : TQ → R
x 7→ 〈J(x), ξ〉

is a function on TQ.
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Group actions and quotient manifold

• Idea: reducing the dimensions of TQ (i.e., taking out redundant
d.o.f.) when L is G-invariant.
• The group action Φ : G ×M → M on a manifold M needs to be

1 free: for every x ∈ M, Φg (x) = x if and only if g = idG ,
2 proper: for any compact subset K ⊂ M, Φ−1(K ) is also compact.

• Equivalence relation: x ∼ y if ∃ g ∈ G such that Φ(g , x) = y .
• The orbit of x and the orbit space are

[x ] = {y ∈ M | y ∼ x} , M/G = {[x ] | x ∈ M} ,

respectively,
• Φ smooth, free and proper =⇒ M/G is a differentiable manifold of

dimension dimM − dimG .
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Lemma
Consider a forced Lagrangian system (L, β). Let ξ ∈ g. Then

1 Jξ is a conserved quantity if and only if

β(ξc
Q) = 0.

2 If the previous equation holds, then ξ leaves β invariant if and only if

ιξc
Q
dβ = 0.

In addition, the vector subspace of g given by

gβ =
{
ξ ∈ g | β(ξc

Q) = 0, ιξc
Q
dβ = 0

}
is a Lie subalgebra of g.
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Isotropy group

• Jξ is a constant of the motion ∀ξ ∈ gβ ⇒ J−1
β (µ) is left invariant by

the flow of ξL,β.
• Therefore the integral curves of ξL,β are contained in level sets
J−1
β (µ) ⊂ TQ.

• The isotropy Lie algebra at µ ∈ g∗
β is

(gβ)µ = {ξ ∈ gβ | 〈µ, [ξ, η]〉 = 0 ∀η ∈ gβ} .

• (Gβ)µ ≤ G is the Lie group generated by (gβ)µ.
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Theorem
Consider a gβ-invariant forced Lagrangian system (L, β) on TQ. Let
µ ∈ g∗

β. Then:
1 The quotient space (TQ)µ := J−1

β (µ)/(Gβ)µ is endowed with an
induced symplectic structure ωµ, given by

π∗
µωµ = i∗µωL,

where πµ : J−1
β (µ)→ (TQ)µ and iµ : J−1

β (µ) ↪→ TQ.
2 The reduced Lagrangian Lµ is given by

Lµ ◦ πµ = L ◦ iµ.

3 The reduced external force βµ is given by

π∗
µβµ = i∗µβ.

Asier López Gordón (ICMAT) The geometry of Rayleigh dissipation July 5, 2021 23 / 27



Introduction Hamiltonian mechanics Lagrangian mechanics Rayleigh dissipation Symmetries Reduction Conclusions References

Main results

1 Generalization of Noether’s theorem for forced Lagrangian systems.
2 Study and classification of symmetries for forced mechanical systems.
3 Development of a reduction theory for forced Lagrangian systems.
4 Geometric description of Rayleigh forces, particularizing the results

above.
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Future work

1 Extension of the results to higher-order systems: L(q, q̇, q̈, . . . , q(k))
on T kQ.

2 Extension of the results to non-autonomous systems: L(q, q̇, t) on
TQ × R.

3 Hamilton-Jacobi theory:

H
(
qi ,

∂W
∂qi

)
= E ⇔ (dW ∗)H = E

4 Discrete mechanics and geometric integrators.
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Thanks for your attention!
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