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Introduction
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Symplectic geometry

Symplectic geometry is the natural framework for classical mechanics.

Recall that a symplectic form w on M is a 2-form such that dw =0
and TM 3 v — (,w € T*M is an isomorphism.

Given a function f on M, its its Hamiltonian vector field Xr is given by

tx,w = df.

The Poisson bracket {-, -} is given by

{f. g} = w(Xr, Xg)-
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Theorem (Liouville-Arnold theorem)

Let fi,...,f, be independent functions in involution (i.e., {f;, fi} =0 Vi, j)
on a symplectic manifold (M?",w). Let My = {x € M | f; = \;}.

@ Any compact connected component of My is diffeomorphic to T".
@® On a neighborhood of My there are coordinates (', J;) such that

w = de¢' AdJ;,
and the Hamiltonian dynamics are given by
dy’ ]
=Q'(h,...,d
dt ( 1 9 n)v

A _
dt
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Contact geometry

Definition

A (co-oriented) contact manifold is a pair (M, n), where M is an

(2n 4 1)-dimensional manifold and 7 is a 1-form on M such that n A (dn)”
is a volume form.

® The contact form n defines an isomorphism
b: X(M) — QY(M)
X = uxdn +n(X)n,

® There exists a unique vector field R on (M, n), called the Reeb
vector field, such that b(R) = 7, that is,

trdn =0, 1gn =1.
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Contact geometry

® The Hamiltonian vector field of f € C>°(M) is given by
b(Xf) = df — (R(f)+ f)n,

® Around each point on M there exist Darboux coordinates (q', p;, 2)

such that
n=dz— pidq’,
9
R=.
o _ Of 0 _<8f+ .8f> ) +(_8f_f>6
= 9pog  \oqg  Paz)ap " \Pop 8z
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Contact geometry

® The Jacobi bracket is given by
{f,g} = —dn(>"'df,b"'dg) — FR(g) + gR(f).

® This bracket is bilinear and satisfies the Jacobi identity.

® However, unlike a Poisson bracket, it does not satisfy the Leibniz
identity:

{f.gh} # {f.gth+{f, h}g.

Integrability of contact Hamiltonian systems deleonfest 7



Introduction
[e]ee] }

Dissipated quantities

® |n contact Hamiltonian dynamics dissipated quantities are akin to
conserved quantities in symplectic dynamics.

® Energy (Hamiltonian function) is no longer conserved, but dissipated
in a certain manner:
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Dissipated quantities

Example (linear dissipation)
Let

2
M=R3 5=dz— pdg, H:%—i—V(q)—i—/@z.

Then Xy(H) = —kH, so
Hoc(t) = e "Hoc(0),

along an integral curve ¢ of Xy.
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Dissipated quantities

Definition
An H-dissipated quantity is a solution f € C°°(M) to the PDE

Xu(f) = —R(H)f .

e A function f is H-dissipated iff
{f,H}=0.

® Noether's theorem: symmetries <> dissipated quantities.
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® Let Mipy, = {x e M|3reR": f(x) = rAa}.

Theorem (Colombo, de Ledn, L., L.-G., 2023)

Let (M,n) be a (2n + 1)-dimensional contact manifold. Suppose that
fo, fi,..., Ty are functions in involution such that (df,) has rank at least n.

Then, My, is invariant by the Hamiltonian flow of f, and diffeomorphic
to Tk x R™+1=k,
Moreover, there is a neighborhood U of My, such that

© There exists coordinates (y°,...,y", A1,...,A,) on U such that the
equations of motion are given by

=Q%A;), A=0, ac{0,....n},ie{l,... ,n}.

@® There exists a conformal change 7j = 1/ Ao such that (y', A,,yo) are
Darboux coordinates for (M, 7j), i.e. ij = dy® — A;dy’.
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Steps of the proof

@ Symplectize (M, n) and f,, obtaining an exact symplectic manifold
(M%,6) and homogeneous functions in involution 2.

® Prove a Liouville-Arnold theorem for exact symplectic manifolds with
homogeneous functions in involution.

© “Un-symplectize” the action-angle coordinates (yg, AZ) on M*,
yielding functions (y*, Ax) on M.

@ Introduce action-angle coordinates (y®, 74,-) on M, where 74; = —%.
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Exact symplectic
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Exact symplectic manifolds: Liouville geometry

Definition

An exact symplectic manifold is a pair (M, ), where M is a manifold
and 0 a one-form on N such that w = —d#é is a symplectic form on M.

® The Liouville vector field A of (M, 0) is given by
iaw = —0.

® A tensor T is called homogeneous of degree n if LAT =nT.
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Symplectization of contact manifolds

Let (M, n) be a contact manifold and (M*,6) an exact symplectic
manifold. A symplectization is a fibre bundle ¥: M> — M such that

oX'n=20,

for a function o on M* called the conformal factor.
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Symplectization of contact manifolds

Category of contact manifolds

!

Category of exact symplectic manifolds

® Contact distribution kern <— symplectic potential 8
® Functions <— homogeneous functions of degree 1

® Hamiltonian vector fields <— Hamiltonian vector fields,
homogeneous of degree 0
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Symplectization of contact manifolds

Given a symplectization ¥: (M*,0) — (M, n) with conformal factor o,
there is a bijection between functions f on M and homogeneous functions
of degree 1 f= on M* such that

T (Xex) = X

This bijection is given by
> = o%*f.

Moreover, one has

{fF.g"}, =1f.ehy.
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Symplectization of contact manifolds

Y =m: (MxR" 0 =rn)— (M,n) is a symplectization with conformal
factor o = r, for r the global coordinate on R™.
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Liouville—=Arnold theorem for exact symplectic manifolds

® \We want to obtain action-angle coordinates (¢, JX) on (M*,0) in
order to define functions (¢%, J,) on (M,n)

® We need homogeneous objects on (M*, ) so that they have a
correspondence with objects on (M, 7).

® However, the classical Liouville—Arnold theorem does not take into
account the homogeneity of 6 and f.

® Moreover, we need to consider non-compact level sets of faz.
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Liouville—=Arnold theorem for exact symplectic manifolds

Theorem (Colombo, de Ledn, Lainz, L.-G., 2023)

Let (M,0) be an exact symplectic manifold. Suppose that the functions
fo, a=1,...,n, on M are independent, in involution and homogeneous
of degree 1. Let U be an open neighborhood of My such that:

@ 1, have no critical points in U,
@® the Hamiltonian vector fields of X¢, are complete,
© the submersion (f,): U — R" is a trivial bundle over V C R".

Then, U ~R"™™ x T™ x V, provided with action-angle coordinates
(y*, Ay) such that

o Aa
e dAa _

0 = Ady®, —qe, Lae_,
4 dt dt
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Sketch of proof

® Since X¢, are n vector fields tangent to Mj, linearly independent and
pairwise commutative, they generate the algebra R” and
My ~ R"/Zk.

e Thus there are coordinates y* = MZs”, where X¢, (s7) = 6.

® The values of f, define coordinates (J,) on V.

® Since My is Lagrangian, 0 = A, (J)dy® + B%(y, J)dJ,.

® Since f, are homogeneous of degree 1, §(X¢,) = f,.

® By construction, A(y®) = 0.

e \With additional contractions with # and w, one concludes that
0 = A,dy®, where Jg = I\/Ig‘Ja.
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A completely integrable contact system is a triple (M, 7, F), where
(M,n) is a contact manifold and F = (fy,...,f,): M — R is a map
such that

® fy,...,f, are in involution, i.e., {f,,f3} =0 Va,p,

® rank TF > n on a dense open subset My C M.

The functions fy, ..., f, are called integrals.

Integrability of contact Hamiltonian systems deleonfest 2



Assumptions

@ Assume that the Hamiltonian vector fields X, ..., X¢, are complete.
@® Given A € R™1\ {0}, let B C R™!\ {0} be an open neighbourhood
of A.

© Let m: U — My, be a tubular neighbourhood of My, such that
F|y: U — B is a trivial bundle over a domain V' C B.
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Theorem (Colombo, de Leén, L., L.-G., 2023)

Let (M,n, ) be a completely integrable contact system, where
= (fo,..., ). Consider the assumptions of the previous slide. Then:

(1) I\/l<,\> . is coisotropic, invariant by the Hamiltonian flow of f,, and
diffeomorphic to TX x R"1=k for some k < n.

@® There exists coordinates (y°,...,y", A, ... ,74,,) on U such that the
equations of motion are given by

© There exists a nowhere-vanishing function Ag € C*°(U) and a
conformally equivalent contact form 7j = n/Ao such that (y A,, ¥9)
are Darboux coordinates for (M, ), namely, #j = dy® — Aidy’.
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Sketch of the proof

@ Symplectize (M, n) and f,, in order to apply the Liouville-Arnold
theorem for exact symplectic manifolds
* {fu,fz} =0= {fX f5}=0.
® Xr, complete = Xz complete.
® rankdf, > n= rankd(cX*f,) > n+1.
fz
e T((FF)Y(N) ={xeM|IseR: F(x)=2}=My,,.

® X;, commute and are tangent to Mpy, = M), ~ Tk x Rk,

® "Un-symplectize” the action-angle coordinates (yg,AE) on U,
yielding functions (y, Ay) on U.

© Introduce action-angle coordinates (y®, A;) on U
® Since A #0, dA, #0. W.l.o.g., assume Ay # 0.
® Then (y”‘,A,- = f%) are coordinates on U.
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Sketch of the proof

® By construction, y“ are linear combinations of flows of X , namely,

9]
Xr, = Mg —.
fo P osh
® Therefore, the dynamics are given by
dy® dA;
_— = Qa = 0.
de ’ de

® 0 = AZdyg ~ 1 = Aady®, so

1 ~ .
i=—n=dy°—Ady"
== y
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An example

Let M = R3\ {0} with canonical coordinates (g, p, z), and
n =dz — pdq.

® The functions h = p and f = z are in involution.

® Let F=(hf): M — R2

® rank TF = 2, and thus (M, n, F) is a completely integrable contact
system.
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An example

® Hypothesis of the theorem are satisfied:
@ The Hamiltonian vector fields

are complete,
@® Since F: (g, p,z) — (p, z) is the canonical projection,
F:R3\ {0} — R?\ {0} is a trivial bundle.
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An example

The invariant submanifolds are given by
Miny, ={(q,p,2) € M| 3reRy: p=rA1,z=rNr},
or, equivalently,
Mny, ={(q,p,z) € M| 3IreRy: p=rsing,z=rcosp},

where (A)+ = ((sin ¢, cos ¢)) 4 for some ¢ € [0, 27).
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An example

Consider the chart (U; &, (, ¢), where
U=M\{z=0}, {=gq, (=2z, @=arctan <5) (mod27),

Suppose that (A) # ((1,0))+. Then, one can write

My, = {(f,(, ©) | p = arctan (T)} )

2
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An example

In the chart (U; &, ¢, ), the Hamiltonian vector fields read

0 0

Xh:aié_, Xf:—aié_

Therefore, the action ®: R? — M defined by their flows is given by

q)(t,S;f,C,(P) = (5 + t,g“e_s,go) .
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An example

® Consider a reference point xo € My, with coordinates (&o, (o, ¥0)-

+
® The angle coordinates (y°, y!) of a point x € My, with coordinates

(f;(: 900) are given by

(£, ¢, 00) = DO, ¥ €0, Co, 00) = (€2 + 0, Coe ™", 00)

that is

W=¢-¢=qg—q, y'=logl —log(=logz —logz.
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An example

® \We know that the contact form can be written as
n = Agdy® + Ardy’.

® Therefore,
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An example

* To sum up, we have a chart (M \ {z = 0};y°, y!, A), where

NS

WY=qg-q, y'=logz—logz A=-—

® |n this chart,

0 0
=50 =

® |t is a Darboux chart for the contact form

_ 1

Xh

dy® — Ady*.

® Notice that XhNis the Reeb vector field of 7j and Xf is the Hamiltonian
vector field of A w.r.t. 7.
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Other notions of integrability

® Khesin and Tabachnikov, Liberman, Banyaga and Molino, Lerman,
etc. have defined notions of contact complete integrability which are
geometric but not dynamical, e.g. a certain foliation over a contact
manifold.

® Boyer considers the so-called good Hamiltonians H, i.e., R(H) =0~
no dissipated quantities, “symplectic” dynamics.

® Miranda considered integrability of the Reeb dynamics when R is the
generator of an S!-action.

® \We are interested in complete integrability of contact Hamiltonian
dynamics.

Integrability of contact Hamiltonian systems deleonfest 34



Toric manifolds

Toric manifolds

A toric manifold is a (compact) symplectic manifold (M, w), a smooth
effective Hamiltonian Lie group action of T” and a moment map
J=(J)": M — g* ~ R" that satisfies £y = X forall £ €g.

Note that, choosing a basis of the Lie algebra we obtain an integrable
system (J;);.

Conversely, an integrable system provides the structure of a toric manifold.
The flow of the Hamiltonian vector fields provides a Hamiltonian effective
action of T" and a the the action variables provide a moment map.

By the theorem of Atiyah, Guillemin and Sternberg, if M is compact,
J(M) is a convex polytope.
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Toric manifolds

The moment map and integrable systems

In the contact case, we may equivalently define a moment map
J={((Ja)a)+ : M — S", having coisotropic level sets.
Here S™ can be seen as R"”\ {0} modulo multiplication by positive integers.

MZ Rn—i—l \ {0}
J{Z lﬂ'g
M—T 5 gn

The flow of the Hamiltonian vector fields also provides an effective action,
which can be related using ¥ to the symplectic one.
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