

Homogeneous Darboux theorems

Asier López-Gordón

Joint work with Janusz Grabowski

VIII Iberoamerican Meeting on Geometry,
Dynamics, and Field Theory
Celebration of the 60th birthday of Juan Carlos Marrero

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

The interest of gradings

There are several scenarios in geometry and physics in which a $(\mathbb{N}, \mathbb{Z}, \mathbb{Z}_2, \mathbb{R}, \dots)$ grading appears:

- the algebra of exterior forms with the exterior product $(\Omega^\bullet(M), \wedge)$,
- the spin of particles,
- intensive/extensive variables in thermodynamics,
- symplectisation/Poissonisation of contact/Jacobi manifolds,
- supermanifolds,
- higher tangent bundles.

Theorem (Euler)

Let $f: \mathbb{R}^n \rightarrow \mathbb{R}$ be a differentiable function, and k an integer. The following assertions are equivalent:

① $f(t \cdot x) = t^k f(x), \quad \forall t \in \mathbb{R} \setminus \{0\}, \forall x \in \mathbb{R}^n,$

② f is an eigenfunction of $X = \sum_{i=1}^n x^i \partial_{x^i}$ with eigenvalue k , namely

$$X(f) = k \cdot f.$$

Definition

A function f satisfying any of the equivalent conditions above is called **homogeneous of degree k** or **k -homogeneous**.

We can extend this notion to a manifold M^n by considering a vector field $X \in \mathfrak{X}(M)$ which is locally of the form

$$X = \sum_{i=1}^n x^i \partial_{x^i}$$

in a certain atlas.

Definition

An (even) vector field ∇ on a (super)manifold M is called a **weight vector field** if in a neighbourhood of every point of (the body of) M there are coordinates (x^a) such that

$$\nabla = \sum_{a=1}^n w_a \cdot x^a \partial_{x^a}, \quad w_a \in \mathbb{R}.$$

Such coordinates are called **homogeneous coordinates**, and the pair (M, ∇) is called a **homogeneity (super)manifold**.

Definition

Let (M, ∇) be a homogeneity (super)manifold and $w \in \mathbb{R}$. A tensor field A on M is called **homogeneous of degree w** or **w -homogeneous** if

$$\mathcal{L}_{\nabla} A = w \cdot A.$$

Example (Trivial)

The zero-section of the tangent bundle makes any (super)manifold a homogeneity (super)manifold:

$$\nabla \equiv 0.$$

This means that all the subsequent results I shall present still hold if you forget the adjective “homogeneous”.

Example (Vector bundles)

Let $\pi: E \rightarrow M$ be a vector bundle (VB). The Euler vector field $\nabla_E \in \mathfrak{X}(E)$, i.e. the infinitesimal generator of homotheties on the fibers, is a weight vector field. In bundle coordinates,

$$\pi: (x^i, y^a) \mapsto (x^i), \quad \nabla_E = \sum_a y^a \partial_{y^a}.$$

Remark

The structure of VB on E is uniquely determined^a by its structure of manifold and a smooth action of the monoid (\mathbb{R}, \cdot) generated by ∇_E

^aSee Grabowski and Rotkiewicz, *J. Geom. Phys.* **59** (2009).

Example (Exact symplectic manifolds)

Let (M, ω) be a symplectic manifold. Then, the following statements are equivalent:

- ① ω is exact, i.e. there exists a $\theta \in \Omega^1(M)$ such that $\omega = d\theta$,
- ② there exists a **Liouville vector field** $\nabla \in \mathfrak{X}(M)$ such that $\mathcal{L}_\nabla \omega = \omega$.

In fact, since $\mathfrak{X}(M) \ni X \mapsto \iota_X \omega \in \Omega^1(M)$ is an isomorphism, given θ (resp. ∇), we can univocally define θ (resp. ∇) by the relation

$$\iota_\nabla \omega = \theta.$$

The Liouville vector field is a weight vector field. Indeed, in Darboux coordinates (q^i, p_i) for θ , we have

$$\theta = p_i dq^i \implies \nabla = p_i \partial_{p_i}.$$

A supercrash course on supergeometry

- The superspace $\mathbb{R}^{p|q} = \mathbb{R}^p \times (\text{Grassmann algebra})$ has canonical coordinates $(x^1, \dots, x^p, \xi^q, \dots, \xi^q)$, where x are commuting and ξ anti-commuting:

$$x^i \cdot x^j = x^j \cdot x^i, \quad x^i \cdot \xi^a = \xi^a \cdot x^i, \quad \xi^a \cdot \xi^b = -\xi^b \cdot \xi^a.$$

- Superroughly speaking, a $(p|q)$ -dimensional supermanifold M is a topological space that is locally isomorphic to $\mathbb{R}^{p|q}$. There is an associated p -dimensional manifold $|M|$ called the body of M .
- In this talk, I will be interested only in local coordinates, so we can just think $M = \mathbb{R}^{p|q}$ and $|M| = \mathbb{R}^p$.
- Smooth functions on M are polynomials on the anticommuting variables ξ with functions on the commuting variables x as coefficients, e.g. in $\mathbb{R}^{p|2}$ these are of the form

$$f(x^1, \dots, x^p, \xi^1, \xi^2) = f_0(x) + f_1(x) \xi^1 + f_2(x) \xi^2 + f_{12}(x) \xi^1 \cdot \xi^2.$$

A supercrash course on supergeometry

- The fact that there are commuting and anti-commuting coordinates makes supermanifolds equipped with a \mathbb{Z}_2 -grading.
- We call objects with \mathbb{Z}_2 -degree 0 (resp. 1) **even** (resp. **odd**).
- A tangent vector v at a point p is defined as a superderivation on the space of functions on M :

$$v(f \cdot g) = v(f) \cdot g(p) + (-1)^{|v|} |f| f(p) \cdot v(g),$$

where $|\cdot|$ denotes the \mathbb{Z}_2 -grading.

- Coordinates (x^i, ξ^a) induce a basis $(\partial_{x^i}, \partial_{\xi^a})$ of the tangent space $T_p M$ at p such that

$$\partial_{x^i}(x^j) = \delta_i^j, \quad \partial_{\xi^a}(\xi^b) = \delta_a^b, \quad \partial_{x^i}(\xi^a) = 0 = \partial_{\xi^a}(x^i).$$

- With this, it is possible to extend the notions of vector field, differential form, (co)tangent bundle, and (co)distribution.

A supercrash course on supergeometry

- The wedge product now depends on the \mathbb{Z}_2 -grading, as well as the usual \mathbb{N} -grading:

$$\alpha \wedge \beta = (-1)^{kl+|\alpha| |\beta|} \beta \wedge \alpha,$$

for any k -form α and any l -form β .

Definition

A distribution $D \subseteq TM$ (resp. codistribution $D \subseteq T^*M$) on a homogeneity (super)manifold (M, ∇) is called a **homogeneous distribution** if the tangent lift $d_T \nabla$ (resp. the cotangent lift $d_T^* \nabla$) is tangent to D .

Theorem (Grabowska and Grabowski, 2024)

$D \subseteq TM$ is a homogeneous distribution iff it is locally generated by homogeneous vector fields.

Corollary

$D \subseteq T^*M$ is a homogeneous codistribution iff it is locally generated by homogeneous one-forms.

Homogeneous Frobenius theorem

Theorem (Grabowski and Grabowska, 2025)

Let $D \subset TM$ be a rank- k involutive homogeneous distribution on a homogeneity supermanifold (M, ∇) of total dimension n , and let $m \in |M|$. Then, there is a neighbourhood of m endowed with a system (x^i) , $i = 1, \dots, n$, of homogeneous local coordinates such that

- ① D is locally spanned by $\langle \partial_{x^1}, \dots, \partial_{x^k} \rangle$, if either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin D_m$;
- ② D is locally spanned by $\langle \partial_{x^1}, \dots, \partial_{x^{k-1}}, Y \rangle$, where

$$Y = \nabla + \sum_{j=k}^{n-1} h_j(x^k, \dots, x^{n-1}) \partial_{x^j},$$

in the case $\nabla(m) \neq 0$ and $\nabla(m) \in D_m$.

Homogeneous symplectic Darboux theorem

Theorem (Grabowska and Grabowski, 2024)

Let ω be (λ, σ) -homogeneous symplectic form on a homogeneity (super)manifold (M, ∇) (with $\lambda \in \mathbb{R}$ and $\sigma \in \mathbb{Z}_2$). Around every $x_0 \in |M|$ such that $\nabla(x_0) = 0$, there is a system of homogeneous coordinates (q^i, p_i, ξ^l) such that

$$\omega = \sum_i dp_i \wedge dq^i + \sum_l \varepsilon^l d\xi^l \wedge d\xi^l, \quad \varepsilon^l = \pm 1.$$

Definition

A **presymplectic form** ω on a **(super)**manifold M is a closed 2-form of constant rank r . Its **characteristic distribution** $C_\omega \subseteq TM$ is given by

$$C_\omega = \ker \omega.$$

Proposition

The characteristic distribution C_ω is an integrable distribution. Moreover, if ω is homogeneous (w.r.t. a weight vector field ∇ on M), then C_ω is a homogeneous distribution.

Homogeneous presymplectic Darboux theorem

Theorem (Grabowski and L. G.)

Let ω be (λ, σ) -homogeneous presymplectic form on a homogeneity (super)manifold (M, ∇) (with $\lambda \in \mathbb{R}$ and $\sigma \in \mathbb{Z}_2$). Around any point $x_0 \in |M|$ such that either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin \ker \omega_m$, there is a system of homogeneous coordinates $(q^i, p_i, \xi^l, z^a, \chi^b)$ such that

$$\omega = \sum_i dp_i \wedge dq^i + \sum_l \varepsilon^l d\xi^l \wedge d\xi^l, \quad \varepsilon^l = \pm 1.$$

Class of a one-form

Definition

Let α be a k -form on a supermanifold M . The subset

$$\chi(\alpha) = \ker(\alpha) \cap \ker(d\alpha) \subseteq TM$$

is called the **characteristic set** of α .

If $\chi(\alpha)$ is a distribution, it is called the **characteristic distribution** of α , we say that α is **regular**, and the corank of $\chi(\alpha)$ as a sub-bundle of TM is called the **class of α** :

$$c_\alpha := \text{corank} (\chi(\alpha)) .$$

Remark

For a one-form α on a (standard) manifold M , this is equivalent to the classical definition of class, namely:

- $\text{class}(\alpha) = 2s + 1$ iff $\begin{cases} \alpha \wedge d\alpha^s \neq 0, \\ d\alpha^{s+1} = 0. \end{cases}$

- $\text{class}(\alpha) = 2s$ iff $\begin{cases} \alpha \wedge d\alpha^{s-1} \neq 0, \\ d\alpha^s \neq 0, \\ \alpha \wedge d\alpha^s = 0. \end{cases}$

Proposition

If α is a regular form, then $\chi(\alpha)$ is involutive and α is $\chi(\alpha)$ -invariant.

Non-degenerate one-forms

Definition

A regular one-form α on a (super)manifold M is called **non-degenerate** if its characteristic foliation is trivial:

$$\chi(\alpha) = \{0_M\},$$

or equivalently,

$$c_\alpha = \dim(M).$$

Non-degenerate one-forms

The annihilator of $\chi(a)$ is given by

$$(\chi(a))^\circ = (\ker a \cap \ker da)^\circ = (\ker a)^\circ + (\ker da)^\circ = \langle a \rangle + \text{Im}(\flat_{da}),$$

where $\flat_{da}: TM \ni v \mapsto \iota_v da \in T^*M$.

The form is non-degenerate iff $(\chi(a))^\circ = T^*M$, so there are two possible cases for $\dim M \geq 2$:

- ① $T^*M = \langle a \rangle \oplus \text{Im}(\flat_{da}) \implies c_a = \text{rank}(\flat_{da}) + 1$ (contact form),
- ② $T^*M = \text{Im}(\flat_{da}) \implies c_a = \text{rank}(\flat_{da})$ (symplectic potential).

Non-degenerate one-forms

The situation $\dim M = 1$, on the other hand, is trivial, since then every one-form is closed.

Remark

On a (standard) manifold, the rank of $d\alpha$ is always even. Thus, a non-degenerate form α is

- a presymplectic potential iff $\dim M$ is even,
- contact iff $\dim M$ is odd.

Definition

Let α be a regular one-form on a (super)manifold M . We call α a **precontact form** (resp. a **presymplectic potential**) if the induced one-form α_{red} on $M/\chi(\alpha)$ is a **contact form** (resp. a **symplectic potential**).

Remark

If α is regular, then $d\alpha$ is presymplectic.

Darboux theorem for homogeneous one-forms

Theorem (Darboux theorem for homogeneous one-forms)

Let α be a regular homogeneous one-form of degree $\lambda = (\sigma, w) \in \mathbb{Z}_2 \times \mathbb{R}$ on a homogeneity supermanifold (M, ∇) . Around each point $x_0 \in |M|$ such that either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin \chi(\alpha)_m$:

- ① If α is a precontact form of class $2r + s + 1$ and $\nabla(x_0) = 0$ or $w \neq 0$,

$$\alpha = dz + \sum_{i=1}^r p_i dq^i + \sum_{l=1}^s \varepsilon^l y^l dy^l, \quad \varepsilon^l = \pm 1,$$

in a certain system of homogeneous coordinates (q^i, p_i, z, y^l, x^a) centered at x_0 .

The coordinates (y^l) only appear if α is even, i.e. $\sigma = 0$.

Darboux theorem for homogeneous one-forms

Theorem (Darboux theorem for homogeneous one-forms)

Let α be a regular homogeneous one-form of degree $\lambda = (\sigma, w) \in \mathbb{Z}_2 \times \mathbb{R}$ on a homogeneity supermanifold (M, ∇) . Around each point $x_0 \in |M|$ such that either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin \chi(\alpha)_m$:

- ① If α is a precontact form of class $2r + s + 1$, $\nabla(x_0) \neq 0$ and $w = 0$,

$$\alpha = \frac{dz}{z} + \sum_{i=1}^r p_i dq^i + \sum_{l=1}^s \varepsilon^l y^l dy^l, \quad \varepsilon^l = \pm 1,$$

in a certain system of homogeneous coordinates (q^i, p_i, z, y^l, x^a) such that

$$z(x_0) = 1, \quad q^i(x_0) = p_i(x_0) = y^l(x_0) = x^a(x_0) = 0.$$

The coordinates (y^l) only appear if α is even, i.e. $\sigma = 0$.

Darboux theorem for homogeneous one-forms

Theorem (Darboux theorem for homogeneous one-forms)

Let α be a regular homogeneous one-form of degree $\lambda = (\sigma, w) \in \mathbb{Z}_2 \times \mathbb{R}$ on a homogeneity supermanifold (M, ∇) . Around each point $x_0 \in |M|$ such that either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin \chi(\alpha)_m$:

- ① If α is a presymplectic potential of class $2r + s$,

$$\alpha = \sum_{i=1}^r p_i dq^i + \sum_{l=1}^s \varepsilon^l y^l dy^l, \quad \varepsilon^l = \pm 1,$$

in a certain system of homogeneous coordinates $(q^i, p_i, y^l, x^\sigma)$

The coordinates (y^l) only appear if α is even, i.e. $\sigma = 0$.

Corollary

Let α be a regular λ -homogeneous one-form on a homogeneity manifold (M, ∇) . Around each point $x_0 \in M$ such that either $\nabla(m) = 0$ or $\nabla(m) \neq 0$ and $\nabla(m) \notin \chi(\alpha)_m$, there exists a system of homogeneous coordinates in which α has a canonical expression:

- ① $\alpha = dz + \sum_{i=1}^r p_i dq^i$, if α is precontact, and $\nabla(x_0) = 0$ or $w \neq 0$,
- ② $\alpha = \frac{dz}{z} + \sum_{i=1}^r p_i dq^i$, $\nabla = z\partial_z$ and $z(m) = 1$ if α is precontact,
 $\nabla(x_0) \neq 0$ and $w = 0$,
- ③ $\alpha = \sum_i p_i dx^i$, if α is a presymplectic potential.

Homogeneous Poincaré lemma

Lemma (Grabowska and Grabowski, 2024)

Let ω be a λ -homogeneous k -form (with $k > 0$ and $\lambda \in \mathbb{R}$) on a homogeneity (*super*)manifold (M, ∇) . In a neighbourhood of each $x_0 \in M$ such that $\nabla(x_0) = 0$, there exists a $(k - 1)$ -form a such that:

- 1 $da = \omega$,
- 2 a is λ -homogeneous,
- 3 $a(x_0) = 0$.

Example (Non-trivial homogeneous forms of weight zero)

- Consider \mathbb{R}^3 with canonical coordinates (x, y, z) and $\nabla = x\partial_x - y\partial_y$.
- Any smooth functions $f_i: \mathbb{R}^3 \rightarrow \mathbb{R}$ of the form

$$f_i(x, y, z) = \varphi_i(xy, z)$$

are homogeneous of weight 0.

- Let $q = x(1 + f_1)$, $p = y(1 + f_2)$, $\zeta = f_3$ such that

$$\frac{\partial f_3}{\partial z} \Big|_{(0,0,0)} \neq 0$$

- Then, $\eta = d\zeta + pdq$ is a (local) homogeneous contact form of weight 0.

Example (Non-trivial homogeneous forms of weight zero)

- Consider \mathbb{R}^3 with canonical coordinates (x, y, z) and $\nabla = x\partial_x - y\partial_y$.
- For instance,

$$\begin{aligned}\eta = & y \left(1 + \sin z + \cos(xy)(1 + \sin z) - \sin(xy)(e^z + xy(1 + \sin z)) \right) dx \\ & - x \sin(xy) \left(xy(\sin z + 1) + e^z \right) dy + e^z \cos(xy) dz\end{aligned}$$

is a homogeneous contact form of weight 0.

- A system of homogeneous Darboux coordinates is

$$q = x(1 + \cos(xy)), \quad p = y(1 + \sin(xy)), \quad \zeta = e^z \cos(xy),$$

so that $\eta = d\zeta + pdq$ and $\nabla = q\partial_q - p\partial_p$.

Example (Non-trivial homogeneous forms of weight zero)

- Consider \mathbb{R}^3 with canonical coordinates (x, y, z) and $\nabla = x\partial_x - y\partial_y$.
- Similarly, the one-form

$$\begin{aligned}\theta = & y(\cosh(xy) + 1)(\sinh(xy) + xy \cosh(xy) + 1) \, dx \\ & + x^2 y \cosh(xy)(\cosh(xy) + 1) \, dy\end{aligned}$$

is homogeneous presymplectic potential of weight 0.

- Homogeneous Darboux coordinates (q, p, ζ) are given by

$$q = x(1 + \sinh(xy)), \quad p = y(1 + \cosh(xy)), \quad \zeta = z.$$

Main references

- [1] R. L. Bryant, S. S. Chern, R. B. Gardner, H. L. Goldschmidt, and P. A. Griffiths. *Exterior Differential Systems*. Vol. 18. Mathematical Sciences Research Institute Publications. Springer-Verlag, New York, 1991.
- [2] C. Carmeli, L. Caston, and R. Fioresi. *Mathematical Foundations of Supersymmetry*. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich, 2011.
- [3] K. Grabowska and J. Grabowski. *Graded Supermanifolds and Homogeneity*. 2025. arXiv: 2411.00537.
- [4] J. Grabowski. "Graded Contact Manifolds and Contact Courant Algebroids". *J. Geom. Phys.*, 68 (2013).
- [5] P. Libermann and C.-M. Marle. *Symplectic Geometry and Analytical Mechanics*. Springer Netherlands: Dordrecht, 1987.
- [6] A. Rogers. *Supermanifolds: Theory and Applications*. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

Congratulations, Juan Carlos!

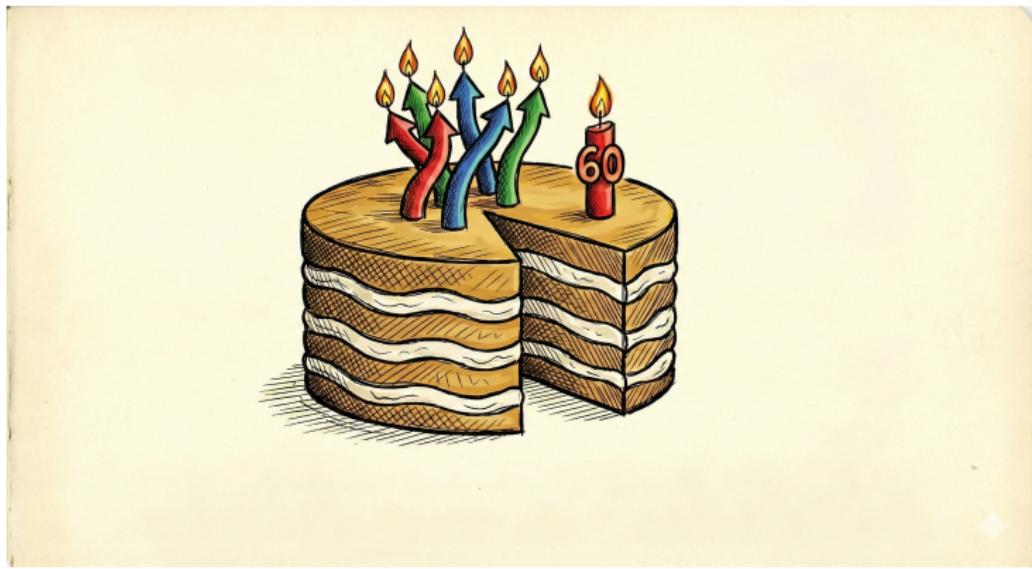


Figure: Candle bundle over a cake foliated by cream and dough leaves. Choosing your favourite flavour is left as an exercise for the audience.

Thank you for your attention!

- ✉ Feel free to contact me at alopez-gordon@impan.pl
- 🌐 These slides are available at www.alopezgordon.xyz