Symmetries, conservation and dissipation in time-dependent contact systems

Asier López-Gordón

Instituto de Ciencias Matemáticas (ICMAT-CSIC), Madrid

Joint work with Jordi Gaset and Xavier Rivas

XXIV Encuentro de Invierno de Geometría, Mecánica y Control Facultad de Ciencias, Universidad de Zaragoza January 19, 2023

Financially supported by Grants CEX2019-000904-S and PID2019-106715GB-C21 funded by MCIN/AEI/10.13039/501100011033

Outline of the presentation

- Introduction
- 2 Cocontact Hamiltonian systems
- Noether's theorem
- 4 Other symmetries
- 5 Lagrangian symmetries
- **6** Examples

ntroduction Cocontact Hamiltonian systems Noether's theorem Other symmetries Lagrangian Examples References

Motivation

- Since the seminal work by Emmmy Noether, the relation between symmetries and conserved quantities has been fundamental in mathematical/theoretical physics.
- If one cannot solve a nonlinear system explicitly, at least knowing its symmetries can provide a qualitative description of its behaviour.
- Reduction procedures can be used in order to simplify the description of a dynamical system whose group of symmetries is known.

Review on symmetries for symplectic mechanics

Symplectic geometry is the natural framework for time-independent classical mechanics.

Theorem

Consider a Hamiltonian system (M, ω, H) . Let $Y \in \mathfrak{X}(M)$. If the flow of Y is a symplectomorphism $(\mathcal{L}_Y \omega = 0)$ and preserves the Hamiltonian function $(\mathcal{L}_Y H = 0)$, then the local functions $f : U \subset M \to \mathbb{R}$ given by

$$\iota_{Y}\omega=\mathrm{d}f$$

are constants of the motion.

The proof is an easy exercise of Cartan calculus.

Review on symmetries for symplectic mechanics

Example (Energy)

We have that $\mathcal{L}_{X_H}\omega=0$ and $\mathcal{L}_{X_H}H=0$, so H is a conserved quantity. (This is no longer the case if H depends explicitly on time.)

Example (Linear momentum)

Suppose that $M=\mathrm{T}^*\mathbb{R}\simeq\mathbb{R}^2,\ \omega=\mathrm{d} q\wedge\mathrm{d} p$ and $H=\frac{p^2}{2}.$ One can easily check that $Y=\frac{\partial}{\partial q}$ verifies $\mathcal{L}_Y\omega=0$ and $\mathcal{L}_YH=0$, so f=p is conserved.

A quite complete and accessible reference is N. Román-Roy, "A summary on symmetries and conserved quantities of autonomous Hamiltonian systems," J. Geom. Mech., 2020.

Cosymplectic and contact structures

Let M be a (2n+1)-dimensional manifold Cosymplectic manifold (M, ω, τ) Contact manifold (M, η)

- ω closed 2-form
- au closed 1-form
- $\tau \wedge \omega^n \neq 0$
- Reeb vector field \mathcal{R}_t :

$$\iota_{\mathcal{R}_t}\omega = 0, \ \iota_{\mathcal{R}_t}\tau = 1$$

• Darboux coords. (t, q^i, p_i) :

$$\omega = \mathrm{d} q^i \wedge \mathrm{d} p_i, \ \tau = \mathrm{d} t, \ \mathcal{R}_t = \frac{\partial}{\partial t}$$

- η 1-form
- $\eta \wedge d\eta^n \neq 0$
- Reeb vector field R_t:

$$\iota_{\mathcal{R}_t} \eta = 1, \quad \iota_{\mathcal{R}_t} \mathrm{d} \eta = 0$$

• Darboux coords. (q^i, p_i, z) :

$$\eta = \mathrm{d}z - p_i \mathrm{d}q^i, \ \mathcal{R}_z = \frac{\partial}{\partial z}$$

Cocontact structures

Idea: a structure that combines the cosymplectic and contact ones.

Definition

A **cocontact manifold** is a triple (M, τ, η) where:

- \bigcirc *M* is a (2n+2)-dimensional manifold,
- 2τ and η are 1-forms,
- $d\tau = 0$,
- $4 \tau \wedge \eta \wedge (\mathrm{d}\eta)^{\wedge n} \neq 0.$

Cocontact structures

• Given a cocontact manifold (M, τ, η) , we have the **flat isomorphism**:

$$egin{aligned} eta \colon \mathfrak{X}(M) & o \Omega^1(M) \ X &\mapsto (\iota_X au) au + \iota_X \mathrm{d} \eta + (\iota_X \eta) \, \eta \end{aligned}$$

and its inverse $\sharp = \flat^{-1}$.

- Reeb vector fields: $\mathcal{R}_t = \flat^{-1}(\tau), \ \mathcal{R}_z = \flat^{-1}(\eta).$
- Darboux coordinates (t,q^i,p_i,z) :

$$au = \mathrm{d}t, \quad \eta = \mathrm{d}z - p_i \mathrm{d}q^i, \quad \mathcal{R}_t = \frac{\partial}{\partial t}, \quad \mathcal{R}_z = \frac{\partial}{\partial z}$$

Cocontact Hamiltonian systems

• Given a Hamiltonian function $H \colon M \to \mathbb{R}$, its **Hamiltonian vector** field is given by

$$b(X_H) = dH - (\mathcal{R}_z(H) + H) \eta + (1 - \mathcal{R}_t(H)) \tau.$$

In Darboux coordinates,

$$X_{H} = \frac{\partial}{\partial t} + \frac{\partial H}{\partial p_{i}} \frac{\partial}{\partial q^{i}} - \left(\frac{\partial H}{\partial q^{i}} + p_{i} \frac{\partial H}{\partial z}\right) \frac{\partial}{\partial p_{i}} + \left(p_{i} \frac{\partial H}{\partial p_{i}} - H\right) \frac{\partial}{\partial z}.$$

Jacobi structure of cocontact manifolds

• A cocontact manifold (M, τ, η) is a Jacobi manifold (M, Λ, E) , where

$$E = -\mathcal{R}_z$$
, $\Lambda(\alpha, \beta) = -\mathrm{d}\eta(\flat^{-1}(\alpha), \flat^{-1}(\beta))$.

The Jacobi bracket is

$$\{f,g\} = -\mathrm{d}\eta \left(\flat^{-1}\mathrm{d}f,\flat^{-1}\mathrm{d}g\right) - f\mathcal{R}_z(g) + g\mathcal{R}_z(f)\,.$$

Canonical cocontact manifold

- Let Q be an n-dimensional manifold with local coordinates (q^i) .
- Let $\theta_0 = p_i dq^i$ be the canonical 1-form of T^*Q .
- Consider the 1-forms $heta_Q=\pi^* heta_0$ and $\eta_Q=\mathrm{d} z- heta_Q$ on $\mathbb{R} imes\mathrm{T}^*Q imes\mathbb{R}$
- Then, $(\mathrm{d}t,\eta_Q)$ is a cocontact structure on $\mathbb{R}\times\mathrm{T}^*Q\times\mathbb{R}$. The local expression of the 1-form η is

$$\eta_Q = \mathrm{d}z - p_i \mathrm{d}q^i .$$

Dissipated quantities

• Given a (time-independent) contact Hamiltonian system (M, η, H) , we have

$$X_H(H) = -\mathcal{R}_z(H)H.$$

 A similar behavior is observed in other quantities which are conserved for symplectic Hamiltonian systems.

Example (Linear momentum)

Let
$$M = \mathbb{R}^4$$
 and $H = \frac{p^2}{2} - \gamma(t)z$. Then,

$$X_H(p) = -\gamma(t)p.$$

Dissipated quantities

• This motivates the following:

Definition

Let (M, τ, η, H) be a cocontact Hamiltonian system. A **dissipated** quantity is a function $f: M \to \mathbb{R}$ such that

$$X_H(f) = -\mathcal{R}_z(H)f$$
.

Proposition

A function $f \in C^{\infty}(M)$ is a dissipated quantity iff $\{f, H\} = \mathcal{R}_t(f)$.

Theorem (Noether's theorem)

Consider the cocontact Hamiltonian system (M, τ, η, H) . Let $Y \in \mathfrak{X}(M)$.

- 1 If $\eta([Y, X_H]) = 0$ and $\tau(Y) = 0$, then $f = -\eta(Y)$ is a dissipated quantity.
- 2 Conversely, given a dissipated quantity f, the vector field $Y = X_f \mathcal{R}_t$ verifies $\eta([Y, X_H]) = 0$, $\tau(Y) = 0$ and $f = -\eta(Y)$.

Definition

A generalized infinitesimal dynamical symmetry is a vector field $Y \in \mathfrak{X}(M)$ such that $\eta([Y, X_H]) = 0$ and $\tau(Y) = 0$.

 We can consider symmetries which preserve the Hamiltonian vector field (and hence map integral curves into integral curves).

Definition

Let (M, τ, η, H) be a cocontact Hamiltonian system and let X_H be its cocontact Hamiltonian vector field.

- **1** An **infinitesimal dynamical symmetry** is a vector field $Y \in \mathfrak{X}(M)$ such that $\mathcal{L}_Y X_H = 0$ and $\iota_Y \tau = 0$.
- ② If $M = \mathbb{R} \times N$ with N a contact manifold, a **dynamical symmetry** is a diffeomorphism $\Phi \colon M \to M$ such that $\Phi_* X_H = X_H$ and $\Phi^* t = t$.
- If $\sigma \colon \mathbb{R} \to M$ is an integral curve of X_H and Φ is a dynamical symmetry, then $\Phi \circ \sigma$ is also an integral curve of X_H .

Definition

An **infinitesimal** ρ -conformal cocontactomorphism is a vector field $Y \in \mathfrak{X}(M)$ such that $\mathcal{L}_Y \eta = \rho \eta$ and $\mathcal{L}_Y \tau = \tau$ for some $\rho \colon M \to \mathbb{R}$.

Proposition

An infinitesimal ρ -conformal cocontactomorphism Y is a generalized infinitesimal dynamical symmetry if, and only if, $\mathcal{L}_YH=\rho H$ and $\iota_Y\tau=0$. If this holds, Y is called an **infinitesimal** ρ -conformal Hamiltonian symmetry

• We can consider the following generalization of infinitesimal ρ -conformal Hamiltonian symmetries:

Definition

Given a cocontact Hamiltonian system (M, τ, η, H) , a (ρ, g) -Cartan symmetry is a vector field $Y \in \mathfrak{X}(M)$ such that

$$\mathcal{L}_{Y}\eta = \rho \eta + \mathrm{d}g$$
, $\mathcal{L}_{Y}H = \rho H + g\mathcal{R}_{z}(H)$, $\iota_{Y}\tau = 0$.

Theorem

If Y is a (ρ, g) -Cartan symmetry, then $f = g - \iota_Y \eta$ is a dissipated quantity.

Classification of infinitesimal symmetries

Generalized infinitesimal dynamical symmetries $\tau(Y) = 0 \qquad \eta([Y, X_H]) = 0$

Infinitesimal dynamical

symmetries

$$\tau(Y) = 0$$
$$[Y, X_H] = 0$$

Infinitesimal conformal Hamiltonian symmetries

$$au(Y) = 0 \quad \mathcal{L}_Y \eta = \rho \eta$$

 $Y(H) = \rho H$

Infinitesimal strict Hamiltonian symmetries

$$\tau(Y) = 0$$
 $\mathcal{L}_Y \eta = 0$
 $Y(H) = 0$

Cartan symmetries

$$\tau(Y) = 0$$
 $\mathcal{L}_Y \eta = \rho \eta + dg$
 $Y(H) = \rho H + g \mathcal{R}_z(H)$

Infinitesimal conformal cocontactomorphisms

$$\tau(Y) = 0$$
$$\mathcal{L}_Y \eta = \rho \eta$$

Lie algebras and Lie groups of symmetries

Proposition

- 1 If Y_1 and Y_2 are infinitesimal dynamical symmetries, then $[Y_1, Y_2]$ is also an infinitesimal dynamical symmetry.
- 2 If Φ_1 and Φ_2 are dynamical symmetries, then $\Phi_1 \circ \Phi_2$ is also a dynamical symmetry.
- § If Y_a is a ρ_a -conformal Hamiltonian symmetry (a=1,2), then [Y,Z] is a $\widetilde{\rho}$ -conformal Hamiltonian symmetry, where $\widetilde{\rho}=Y_1(\rho_2)-Y_2(\rho_1)$.

There are counterexamples showing that neither generalized infinitesimal dynamical symmetries nor Cartan symmetries close Lie subalgebras.

Lagrangian formalism

- Given a smooth n-dimensional manifold Q, consider the product manifold $\mathbb{R} \times \mathrm{T} Q \times \mathbb{R}$ equipped with adapted coordinates (t, q^i, v^i, z)
- Consider a Lagrangian function $L \colon \mathbb{R} \times \mathrm{T} Q \times \mathbb{R} \to \mathbb{R}$. Hereinafter, assume L to be regular, i.e., the Hessian matrix

$$(W_{ij}) = \left(\frac{\partial^2 L}{\partial v^i \partial v^j}\right)$$

is non-singular.

• If L is regular, then $(\mathbb{R} \times \mathrm{T} Q \times \mathbb{R}, \mathrm{d} t, \eta_L, E_L)$ is a cocontact Hamiltonian system.

Lagrangian formalism

The Lagrangian energy and the contact form are given by

$$E_{L} = \Delta(L) - L = v^{i} \frac{\partial L}{\partial v^{i}} - L,$$

$$\eta_{L} = dz - S^{*}(dL) = dz - \frac{\partial L}{\partial v^{i}} dq^{i}.$$

 The dynamics are given by the Herglotz–Euler–Lagrange equations:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial v^i} \right) - \frac{\partial L}{\partial a^i} = \frac{\partial L}{\partial z} \frac{\partial L}{\partial v^i}, \qquad \dot{z} = L.$$

Cyclic coordinates

Suppose that $\frac{\partial L}{\partial q^1}=0$. Then,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial v^i} \right) - \frac{\partial L}{\partial q^i} = \frac{\partial L}{\partial z} \frac{\partial L}{\partial v^i}$$

implies that

$$\frac{\mathrm{d}p_1}{\mathrm{d}t} = \frac{\partial L}{\partial z}p_1,$$

where $p_i := \frac{\partial L}{\partial v^i}$.

Hence, along the trajectories $(q^i(t), v^i(t), z(t))$,

$$p_1(t) = p_1(0) \exp\left(\int_0^t \frac{\partial L}{\partial z}(q^i(s), v^i(s), z(s)) ds\right)$$

Cyclic coordinates

Example

Consider a Lagrangian function of the form

$$L = \frac{1}{2}g_{ij}v^iv^j - V(t, q^2, q^3, \dots, q^n) - \kappa z,$$

for some constant κ .

Then, q^1 is a cyclic coordinate. Thus,

$$\dot{p}_1 = \frac{\partial L}{\partial z} p_1 = -\kappa p_1,$$

SO

$$p_1(t) = p_1(0)e^{-\kappa t}$$

Symmetries of the Lagrangian

Given $Y \in \mathfrak{X}(Q)$, we define Y^C , $Y^V \in \mathfrak{X}(\mathbb{R} \times \mathrm{T}Q \times \mathbb{R})$. Locally,

$$Y = Y^i \frac{\partial}{\partial q^i}, \qquad Y^V = Y^i \frac{\partial}{\partial v^i}, \qquad Y^C = Y^i \frac{\partial}{\partial q^i} + v^i \frac{\partial Y^i}{\partial q^j} \frac{\partial}{\partial v^i}.$$

Theorem

Let $Y \in \mathfrak{X}(Q)$. Then $Y^{C}(L) = 0$ iff $Y^{V}(L)$ is a dissipated quantity. If this holds, then Y^{C} is called an **infinitesimal natural symmetry of the Lagrangian**

Proposition

Infinitesimal natural symmetries of the Lagrangian form a Lie subalgebra of $(\mathfrak{X}(\mathbb{R}\times \mathrm{T} Q\times \mathbb{R}),[\cdot,\cdot])$.

Proposition

An vector field $Z \in \mathfrak{X}(\mathbb{R} \times \mathrm{T} Q \times \mathbb{R})$ with local expression

$$Z = \zeta(t, q, v, z) \frac{\partial}{\partial z}$$

is a generalized infinitesimal dynamical symmetry iff ζ is a dissipated quantity.

If this is the case, we call Z an **infinitesimal action symmetry**.

Consider the cocontact Hamiltonian system ($\mathbb{R} \times \mathrm{T}^*\mathbb{R} \times \mathbb{R}, \mathrm{d}t, \eta, H$), where

$$H=\frac{p^2}{2m(t)}+\frac{\kappa}{m(t)}z\,,$$

with m a function depending only on t, expressing the mass of the particle, and κ a positive constant. The Hamiltonian vector field of H is

$$X_{H} = \frac{\partial}{\partial t} + \frac{p}{m(t)} \frac{\partial}{\partial q} - p \frac{\kappa}{m(t)} \frac{\partial}{\partial p} + \left(\frac{p^{2}}{2m(t)} - \frac{\kappa}{m(t)} z \right) \frac{\partial}{\partial z}.$$

The function

$$f(t, q, p, z) = \exp\left(-\int_0^t \frac{\kappa}{m(s)} ds\right)$$

is a dissipated quantity. Hence, by Noether's Theorem, the vector field

$$Y_f = X_f - \mathcal{R}_t = -\exp\left(-\int_0^t \frac{\kappa}{m(s)} \mathrm{d}s\right) \frac{\partial}{\partial z}$$

is a generalized infinitesimal dynamical symmetry.

In addition, one can verify that Y_f is an infinitesimal dynamical symmetry, namely $[Y_f,X_H=0]$. Moreover.

$$Y_f(H) = -\exp\left(-\int_0^t \frac{\kappa}{m(s)} ds\right) \mathcal{R}_z(H),$$

and

$$\mathcal{L}_{Y_f} \eta = -\mathrm{d} \left(\exp \left(- \int_0^t rac{\kappa}{m(s)} \mathrm{d} s
ight)
ight) \, ,$$

so Y_f is a (0,g)-Cartan symmetry, where $g=-\exp\left(-\int_0^t \frac{\kappa}{m(s)}\mathrm{d}s\right)$.

The Lagrangian counterpart of this system is characterized by the Lagrangian function $L \colon \mathbb{R} \times T\mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by

$$L=m(t)\frac{v^2}{2}-\frac{\kappa}{m(t)}z.$$

The vector field $Z \in \mathfrak{X}(\mathbb{R} \times \mathbb{TR} \times \mathbb{R})$ with local expression

$$Z = \zeta \frac{\partial}{\partial z}, \qquad \zeta(t, q, v, z) = \exp\left(-\int_0^t \frac{\kappa}{m(s)} ds\right)$$

is an infinitesimal action symmetry, since ζ is a dissipated quantity.

An action-dependent central potential with time-dependent mass

Consider a Lagrangian function $L \colon \mathbb{R} \times \mathbb{TR}^2 \times \mathbb{R} \to \mathbb{R}$ of the form

$$L = \frac{m(t)}{2} \left(v_x^2 + v_y^2 \right) - V \left(t, (x^2 + y^2), z \right) ,$$

where m(t) is a positive-valued function. Let $Y \in \mathfrak{X}(\mathbb{R}^2)$ be infinitesimal generator of rotations on the plane, namely,

$$Y = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}.$$

Then,

$$Y^C = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y} - v_y\frac{\partial}{\partial v_x} + v_x\frac{\partial}{\partial v_y}\,, \qquad Y^V = -y\frac{\partial}{\partial v_x} + x\frac{\partial}{\partial v_y}\,.$$

An action-dependent central potential with time-dependent mass

Clearly, Y^C is an infinitesimal natural symmetry of the Lagrangian, i.e.,

$$Y^{C}(L) = 0.$$

Hence.

$$Y^{V}(L) = m(t) \left(-yv_{x} + xv_{y} \right)$$

is a dissipated quantity.

This quantity is the angular momentum for a particle with time-dependent mass.

The two-body problem with time-dependent friction

- The phase space is $\mathbb{R} \times T\mathbb{R}^6 \times \mathbb{R}$, with coords. $(t, \mathbf{q}^1, \mathbf{q}^2, \mathbf{v}^1, \mathbf{v}^2, z)$.
- The superindex denotes each particle, and the bold notation is a shorthand for the three spatial components.
- The Lagrangian function is

$$L = \frac{1}{2}m_1\mathbf{v}^1\cdot\mathbf{v}^1 + \frac{1}{2}m_2\mathbf{v}^2\cdot\mathbf{v}^2 - U(r) - \gamma(t)z$$
,

where $m_1, m_2 \in \mathbb{R}$ are the masses of the particles, U(r) is the central potential and γ is a time-dependent function.

Consider the vector fields

$$Y_i = \frac{1}{m_1 + m_2} \left(\frac{\partial}{\partial q_i^1} + \frac{\partial}{\partial q_i^2} \right) \quad i = 1, 2, 3.$$

The two-body problem with time-dependent friction

• Then,

$$Y_i^C = \frac{1}{m_1 + m_2} \left(\frac{\partial}{\partial q_i^1} + \frac{\partial}{\partial q_i^2} \right), \quad i = 1, 2, 3,$$

and $Y_i^C(L) = 0$, so they are infinitesimal natural symmetries of the Lagrangian.

• The associated dissipated quantities are

$$Y_i^V(L) = \frac{m_1 v_i^1 + m_2 v_i^2}{m_1 + m_2}, \quad i = 1, 2, 3.$$

The two-body problem with time-dependent friction

The center of masses is given by

$$\mathsf{R} = \frac{m_1 \mathsf{q}^1 + m_2 \mathsf{q}^2}{m_1 + m_2} \,.$$

SO

$$\dot{\mathbf{R}} = \frac{\mathrm{d}\mathbf{R}}{\mathrm{d}t} = \frac{m_1\mathbf{v}^1 + m_2\mathbf{v}^2}{m_1 + m_2} = (Y_1^V(L), Y_2^V(L), Y_3^V(L))$$

is made up of 3 dissipated quantities.

Along a solution, it evolves as

$$\dot{\mathbf{R}}(t) = \dot{\mathbf{R}}_0 e^{-\int \gamma(t) \mathrm{d}t}$$
.

In particular, if γ is a positive constant, as the time increases the center of mass tends to move on a line with constant speed $\dot{\mathbf{R}}_0$.

- [1] M. de León and M. Lainz Valcázar, "Infinitesimal symmetries in contact Hamiltonian systems," *J. Geom. Phys.*, Jul. 2020.
- [2] J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, X. Rivas, and N. Román-Roy, "New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries," *Int. J. Geom. Methods Mod. Phys.*, May 2020.
- [3] J. Gaset, A. López-Gordón, and X. Rivas, Symmetries, conservation and dissipation in time-dependent contact systems, Dec. 30, 2022. arXiv: 2205.09454 [math-ph].
- [4] M. de León, J. Gaset, X. Gràcia, M. C. Muñoz-Lecanda, and X. Rivas, "Time-dependent contact mechanics," *Monatsh. Math.*, Sep. 16, 2022.
- [5] N. Román-Roy, "A summary on symmetries and conserved quantities of autonomous Hamiltonian systems," *J. Geom. Mech.*, 2020.

¡Gracias por vuestra atención!

⊠ asier.lopez@icmat.es

www.alopezgordon.xyz