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We analyse the exact expression and asymptotic behaviour of the entanglement entropy of
some integrable spin chains. Our calculations are explicitly carried out for the XX chain,
although most of them will be generalizable to other free fermion or equivalent systems. We
start by introducing the von Neumann entanglement entropy as a measure of the degree of
entanglement between a block of spins and the rest of a spin chain. We present the XX
chain and its equivalence to a free fermion system via a Jordan-Wigner transformation of
its Hamiltonian. Making use of the translational invariance of the chain, we diagonalise the
resulting Hamiltonian through a Fourier transform. From this diagonalised Hamiltonian and
inverting the Fourier transform we obtain the correlation matrix of the model. We show a
correspondence between the eigenvalues of the correlation matrix and the ones of the density
matrix of the system, and exploit this fact to obtain an exact expression for the entanglement
entropy. We then consider the scaling of the entanglement entropy of the block when its size
grows, as well as the dependence of the criticality of the model with the value of the external
magnetic field applied. Moreover, we discuss the relation of entropy scaling and criticality
with conformal field theories. We finally obtain explicitly the asymptotic expression of the
entanglement entropy of the XX model by making use of a proven case of the Fisher-Hartwig
conjecture for Toeplitz matrices.

Analizamos la expresión exacta y el comportamiento asintótico de la entroṕıa de entre-
lazamiento de algunas cadenas de espines integrables. Nuestros cálculos se llevan a cabo
expĺıcitamente para la cadena XX, aunque la mayoŕıa de ellos serán generalizables a otros
sistemas de fermiones libres o equivalentes. Comenzamos introduciendo la entroṕıa de en-
trelazamiento de von Neumann como medida del grado de entrelazamiento entre un bloque
y el resto de una cadena de espines. Presentamos la cadena XX y su equivalencia con un
sistema de fermiones libres v́ıa una transformación de Jordan-Wigner de su hamiltoniano.
Haciendo uso de la invariancia traslacional de la cadena, diagonalizamos el hamiltoniano re-
sultante mediante una transformada de Fourier. A partir de este hamiltoniano diagonalizado
e invirtiendo la transformada de Fourier, obtenemos la matriz de correlación del modelo. De-
mostramos una correspondencia entre los autovalores de la matriz de correlación y los de la
matriz densidad del sistema, y explotamos este hecho para obtener una expresión exacta para
la entroṕıa de entrelazamiento. A continuación, consideramos el comportamiento asintótico
de la entroṕıa de entrelazamiento de un bloque al aumentar su tamaño, aśı como la relación
entre el comportamiento cŕıtico del modelo y el valor del campo magnético externo aplicado.
Finalmente, obtenemos expĺıcitamente la expresión asintótica para la entroṕıa de entrelaza-
miento del modelo XX haciendo uso de un caso probado de la conjetura de Fisher-Hartwig
para las matrices de Toeplitz.
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I. INTRODUCTION

Classically, if the exact state of a certain
physical system is known so is the state of each
of its subsystems. On the other hand, the state
of a quantum system can be known with surety
while the states of its subsystems are uncertain.
Namely, the complete system could be in a pure
state ρ = |ψ〉 〈ψ|, and yet be formed by two sub-
systems with mixed states ρ1 and ρ2. To illus-
trate this, let us consider a system formed by two
qubits, with a state

|ψ〉 =
1√
2
|1 0〉+ 1√

2
|0 1〉 , ρ = |ψ〉 〈ψ| (1)

The density matrix of the first qubit is given by
the partial trace of ρ with respect to the second
qubit, namely

ρ1 = tr2 ρ =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| , (2)

where tr2 is the partial trace over the system of
qubit 2. It can be shown [2] that the partial trace
is the unique operation such that the expectation
value has the property

tr ((M ⊗ 1B) ρ) = tr(MρA) (3)

for any observableM on subsystem A of a system
A ∪B. ρ1 is clearly not a pure state; indeed the
first qubit has 1/2 probability to be in the state
|0〉 or |1〉 and hence the uncertainty is maximal.

Entanglement is not only interesting as a hall-
mark of quantum mechanics, it also has a great
importance for areas like quantum information
theory, quantum many-body physics or even the
study of black holes [3]. Therefore, it is of consid-
erable interest to define a quantitative measure
of how entangled a system is. That is to say, we
need a measure of the degree of entanglement of
subsystem A (or B) of a system A∪B, when the
whole system is in a state (pure or mixed) ρ. A
widely used measure of entanglement is the en-
tropy of the reduced density matrix ρA = trB ρ

(or ρB = trA ρ), known as the entanglement en-
tropy of ρA. We shall note that this is an entropy
in the sense of information theory, regarding ρ as
a probability distribution, not a thermodynamic
entropy.

There are several definitions of (information)
entropy. For the purposes of this work the von
Neumann entropy will be sufficient;

S[ρ] = − tr(ρ log ρ), (4)

where we have taken kB = 1.

The von Neumann entropy can be regarded
as the limit of the Rényi entropy

Sα[ρ] = (1− α)−1 log (tr ρα) , α > 0 (5)

when α goes to 1. It can also be expressed as
the Shannon entropy of the eigenvalues of ρ:

S[ρ] = −
∑
i

λi log λi (6)

In this paper we shall be considering log x as the
natural logarithm of x [23].

The entropy of a pure state clearly vanishes,
whereas a mixed state has non-zero entropy.
Continuing with the previous example, the en-
tropy of each qubit is S1 = S2 = log 2. The
entanglement entropy is a measure of the lack of
information on the the state of a subsystem, even
when the state of the whole system is completely
known. In contrast to thermodynamic entropy,
it does not originate from an incomplete knowl-
edge of the microstates compatible with a given
macrostate. In fact, non-zero entanglement en-
tropy can be encountered at zero temperature.

The von Neumann entropy is additive, that
is S(ρ1 ⊗ ρ2) = S(ρ1) + S(ρ2). Moreover, if a
composite system A ∪B is in a pure state, then
SA = SB. In our case, we are interested in the
use of entanglement entropy to study the quan-
tum correlations of spin chains. We shall de-
termine the entanglement between a block of L
contiguous spins and the rest of the chain in the
ground state. This procedure could also be used
for an arbitrary excited state (non-zero temper-
ature).
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Figure 1. Spin chain with periodic boundary condi-
tions. Each spin site has two possible states: |↑〉 and
|↓〉.

II. XX MODEL AND JORDAN-WIGNER
TRANSFORMATION

We shall now present a model simple enough
to carry out explicit computations while still of
interest. The results we are going to obtain will
be applicable for a wider family of models, in
particular models which are equivalent to a free
fermion system.

The XX model is a (one-dimensional) chain
of N spin-1

2 particles with nearest-neighbour
interactions in an external magnetic field, in
which spin degrees of freedom are considered (see
Fig. 1). This theory can be used as a toy model
for the magnetic behaviour of matter, as it cap-
tures the structure of a quantum phase transition
[4, 5]. In natural units ~ = 1 its Hamiltonian is
given by

HXX =
1

2

N−1∑
l=0

(
σxl σ

x
l+1 + σyl σ

y
l+1

)
+
λ

2

N−1∑
l=0

(σzl + 1)

(7)
where l labels the spins, λ is the magnetic field
and σxl , σ

y
l , σ

z
l are the Pauli matrices acting on

site l.

Without loss of generality, we shall consider
a magnetic field strenth oriented in the positive
z-direction, i.e. λ > 0. If this were not the case
we could straightforwardly map the system onto
an equivalent one with λ > 0 by the interchange
of up and down spin states. In order to simplify
the problem, we are going to assume periodic
boundary conditions, in other words, that the
sites 0 and N of the chain are the same. Once
we consider the thermodynamic limit N → ∞
this election will become irrelevant.

In order to compute the ground state |GS〉

of the XX Hamiltonian, we will first perform a
Jordan-Wigner transformation to express HXX

as a quadratic form of fermionic operators [1, 5].
This transformation is given by the following re-
lation between the creation and annihilation op-
erators of fermionic modes and the Pauli matri-
ces:

al =

(
l−1∏
m=0

σzm

)
σxl − iσ

y
l

2
≡

(
l−1∏
m=0

σzm

)
σ−l (8)

This operators verify the canonical anticommu-
tation relations:

{a†l , am} = δlm {al, am} = 0 (9)

Without the term in brackets al and a†l would
just be the usual spin ladder operators σ±l .
Namely, the factor σ−l corresponds to the op-
erator |0〉l 〈1|l in the fermionic occupation basis.
The ladder operators verify the same-site anti-
commutation relations {σ+

l , σ
−
l } = 1. However

this equivalence between fermionic operators and
spin operators does not work for the many-site
problem, as two fermionic operators on differ-
ent sites anticommute while two spin operators
commute ([σαl , σ

β
m] = 0 for l 6= m). The “string”

of operators
∏l−1
m=0 σ

z
m generates the appropriate

sign so that the fermionic anticommutation rela-
tions are satisfied. Note that the representation
of the spin operators in terms of the fermionic
operators (or viceversa) is highly non-local.

With our sign election, the fermionic vacuum
state |0 · · · 0〉 is mapped into the state with every
spin down in the z-direction |↓ · · · ↓〉. Equiv-

alently, we could switch between al and a†l , in
which case the vacuum state would map into the
state with every spin pointing upwards.

Applying the Jordan-Wigner transformation
to the XX Hamiltonian (7) we obtain

HXX = −
N−1∑
l=0

(
a†l al+1 + a†l+1al

)
+ λ

N−1∑
l=0

a†l al

(10)
Indeed, we can check that

a†l al+1 =
1

4
σz0 · · ·σzl−1(σxl + iσyl )

× σz0 · · ·σzl−1σ
z
l (σ

x
l+1 + iσyl+1)
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As Pauli matrices for different sites commute,
this can be reordered as

a†l al+1 =
1

4
(σz0)2 · · · (σzl−1)2

× (σxl + iσyl )σzl (σ
x
l+1 − iσ

y
l+1)

Moreover, the Pauli matrices have the following
properties:

(σi)2 = 1, σiσj = δij1 + iεijkσ
k, (11)

for i, j, k = x, y, z, where repeated indices are
summed. Therefore the previous expression re-
sults in

a†l al+1 =
1

4
(−iσyl − σ

x
l )(σxl+1 − iσ

y
l+1)

=− 1

4
(σxl σ

x
l+1 + σyl σ

y
l+1)

+
i

4
(σxl σ

y
l+1 − σ

y
l σ

x
l+1)

whose Hermitian conjugate is

a†l+1al =
(
a†l al+1

)†
=− 1

4
(σxl σ

x
l+1 + σyl σ

y
l+1)

− i

4
(σxl σ

y
l+1 − σ

y
l σ

x
l+1)

The sum of the two previous expressions gives
the first term of the Hamiltonian (7). Analo-
gously, we could verify that

a†l al =
1

2
(σzl + 1)

The operators a†l and al create and destroy a
fermion at site l respectively. Unlike the bosonic
case, each site has only two possible states: occu-
pied |1〉l or empty |0〉l. The creation operator a†l
acting over |1〉l thus gives 0. The whole system’s
Fock space is hence 2N -dimensional.

The Hamiltonian (10) corresponds to a sys-
tem of N spinless fermions [24] attached to the
sites of a circular lattice –i.e. the sites 0 and N
refer to the same fermion. The terms a†l al+1 and

a†l+1al correspond to the hopping of a spin be-
tween the sites l and l + 1 –a spin is destroyed
at the site l and another one created at the site
l + 1 or the other way around (see Fig. 2). The

term a†l al is the number operator and measures
whether the site l is occupied or not. As the

1

2
3

0 ≡ N

N − 1

Figure 2. Chain of free fermions with periodic bound-
ary conditions. Each site can be either occupied (by
one fermion) or empty, and fermions can hop between
adjacent sites.

latter appears as a positive contribution for the
Hamiltonian, every site is expected to be empty
for high values of λ. We should note that this
Hamiltonian is translationally invariant and that
it preserves the total number of fermions.

In general, the Jordan-Wigner transforma-
tion maps translationally invariant spin-1

2 chains
onto free-fermion systems with a Hamiltonian of
the form

H =
N−1∑
i 6=j

hN (i− j)a†iaj , (12)

where hN (x) = hN (−x) = hN (N − x) ∈ R is the
hopping amplitude.

The translational symmetry motivates the in-
troduction of the Fourier-transformed fermionic
operators

bk =
1√
N

N−1∑
l=0

ale
−i 2π

N
kl (13)

with 0 ≤ k ≤ N−1. Note that the Fourier trans-
form is an unitary transformation, and hence
these bk operators also satisfy the canonical an-
ticommutation relations (9), which means that
they are fermionic operators. The translation
operator, defined by

T |s0 · · · sN−1〉 = |s1 · · · sN−1s0〉 , (14)

where sl ∈ {0, 1} is the occupation number of
site l, commutes with the Hamiltonian. When T
acts on a certain state every spin of the chain gets



5

shifted by one position to the left. With N trans-
lations the chain comes back to its original state,
i.e. TN = 1, and hence the eigenvalues of T are
e2πik/N (mod 2π). The generator of unit transla-
tions is the total momentum operator, namely

P = −i log T, (15)

which is also conserved. Its eigenvalues are
2πk/N (mod 2π).

The Hamiltonian (10) (or, more generally,
(12)) diagonalises when written in terms of the
operators (13), namely

HXX =
N−1∑
k=0

Λkb
†
kbk ≡

N−1∑
k=0

Λknk, (16)

where Λk is the energy of the k-th mode

Λk = λ− 2 cos

(
2πk

N

)
(17)

(for the Hamiltonian (10)) and nk := b†kbk is the

number operator of mode k. The operator b†k
acting on the vacuum creates a fermion with mo-
mentum 2πk/N (mod 2π) and energy Λk. In-
deed, in terms of the occupation numbers basis
the action of b†k over the vacuum state is

b†k |0 · · · 0〉 =
1√
N

[
|1 0 · · · 0〉+ ei

2πk
N |0 1 · · · 0〉

+ · · ·+ ei
2πk
N

(N−1) |0 0 · · · 1〉
]

and the action of T over that state results in

T
(
b†k |0 · · · 0〉

)
=

1√
N

[
|0 · · · 1〉+ ei

2πk
N |1 · · · 0〉

+ · · ·+ ei
2πk
N

(N−1) |0 · · · 1 0〉
]

=ei
2πk
N b†k |0 · · · 0〉 , mod 2π

That is, b†k |0 · · · 0〉 is an eigenstate of T
with eigenvalue e2πik/N (mod 2π), and thus
it is also an eigenstate of P with eigenvalue
2πk/N (mod 2π). In particular, the Hamiltonian
HXX and the total momentum P operators are
simultaneously diagonalised in the basis of mo-
mentum modes.

Note that both positive and negative energy
modes are possible. The ground state of the

chain is the one in which every negative energy
mode is occupied and every positive energy mode
is empty. Namely,

|GS〉 = (b†0)ε0 · · · (b†N−1)εN−1 |0 · · · 0〉 (18)

with

εk =

{
0 if Λk > 0
1 if Λk < 0

(19)

The ground state energy is thus

E(ε1, . . . , εN ) =
N−1∑
k=0

Λkεk (20)

If there were m modes with Λk = 0, the ground
state would have 2m-fold degeneracy, as the en-
ergy of the system would be the same whether
they were occupied or unoccupied. In our case
m can be at most 2 (for k ∈ {kc, N − kc}), due
to the form of the dispersion relation Λk (see
Fig. 3).

If λ > 2, then Λk ≥ 0 ∀ k; the external mag-
netic field dominates and the ground state is sim-
ply the vacuum state:

|GS〉 = |0 · · · 0〉 , bk |GS〉 = 0 ∀ k, (21)

whose energy is 0. Inverting the Fourier and
the Jordan-Wigner transformations, we conclude
that

|GS〉 = |↓ · · · ↓〉 (22)

The ground state for high values of the magnetic
field is thus, as we expected, a product state and
therefore its entanglement entropy is zero.

On the other hand, if λ ∈ [0, 2), in the ground
state the modes with Λk > 0 are empty whereas
the modes with Λk < 0 are occupied. Hence

bk |GS〉 = 0 if Λk > 0

b†k |GS〉 = 0 if Λk < 0
(23)

The energy of the ground state in this case is∑
k Λk for k ∈ [0, kc] ∪ [N − kc, N − 1], where

kc =

[
N

2π
arccos

(
λ

2

)]
(24)

and [·] denotes the integer part. In the thermo-
dynamic limit, at λ = 2 (and zero temperature)
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Figure 3. The two contributions to Λk, given by eq.
(17), are plotted for the case λ = 1. The dispersion
relation is symmetric with respect to k = N/2 (Λk =
ΛN−k). We observe that Λk < 0 if 2 cos

(
2πk
N

)
> λ.

a phase transition occurs [4, 5] from a fully po-
larized phase (λ > 2) to a critical phase with
quasi-long-range order (0 ≤ λ < 2). The one-
way quantum deficit –defined as the difference
in the entropy of a subsystem before and after
a measurement is performed– can be used as an
order parameter, as it vanishes in the polarized
phase and is non-zero in the critical one.

We could have applied the Fourier transfor-
mation method to any Hamiltonian of the form
(12), likewise resulting in a diagonalised Hamil-
tonian (16) , with Λk given by the Fourier trans-
form of the hopping amplitude hN (x) and kc de-
fined by Λk|k=kc

= 0. This procedure can in fact
be extended to a more general type of Hamilto-
nians:

H = H0 +
∑
i 6=j

gij

(
aiaj + a†ja

†
i

)
(25)

with H0 given by the expression (12), which do
not preserve the number of fermions. In this
case, exemplified by the XY chain, an addi-
tional Bogoliubov transformation [5] is necessary
to completely diagonalise the Hamiltonian.

III. CORRELATION MATRIX METHOD

We are going to compute the von Neumann
entanglement entropy of a block of L adjacent

spins. As the system has translational symme-
try, we can assume they are the first L spins
without loss of generality. In order to compute
the entropy of the block, we shall follow the
method first developed by Vidal, Latorre, Rico
and Kitaev [6], based on the correlation matrix〈
a†man

〉
(0 ≤ m,n ≤ L− 1) of the block. From

now on we shall assume that expectation values
〈 〉 are taken for the ground state of the chain.
To begin with, from the equation (23) we can
easily obtain the correlation matrix

〈
b†pbq

〉
=

{
δpq if Λp < 0
0 if Λp > 0

, (26)

where we have considered the orthonormality of
the modes in the momentum base. The case λ >
2 is trivial: as

〈
b†pbq

〉
vanishes, the correlators〈

a†man

〉
are also null. As we already mentioned,

the ground state is a product state, and hence
its entropy is zero. We shall thus consider the
case 0 ≤ λ < 2 from now on.

Inverting the Fourier transform we obtain

an =
1√
N

N−1∑
k=0

ei
2π
N
knbk, (27)

and therefore

〈
a†man

〉
=

1

N

N−1∑
k=0

〈
b†kbl

〉
e−i

2π
N
kmei

2π
N
ln

=
1

N

kc∑
k=0

δkle
−i 2π

N
kmei

2π
N
ln +

1

N

N−kc−1∑
k=kc+1

0

+
1

N

N−1∑
k=N−kc

δkle
−i 2π

N
kmei

2π
N
ln

=
1

N

 kc∑
k=0

e−i
2π
N
k(m−n)+

N−1∑
k=N−kc

e−i
2π
N
k(m−n)





7

Now, the right-hand sum can be rewritten as

N−1∑
k=N−kc

e−i
2π
N
k(m−n)

=
N∑

k=N−kc

e−i
2π
N
k(m−n) − e−i

2π
N
N(m−n)

=
0∑

k=−kc

e−i
2π
N
k(m−n)e−i

2π
N
N(m−n) − 1

=

kc∑
k=0

e+i 2π
N
k(m−n) − 1

Thus the correlation matrix is given by

〈
a†man

〉
=

1

N

[
kc∑
k=0

(
e−i

2π
N
k(m−n) + c.c.

)
− 1

]

=
2

N

kc∑
k=0

cos

[
2π

N
k(m− n)

]
− 1

N

(28)
Note that so far the only particularity of the
XX model we have considered is the value of
kc, whereas the form of the correlation matrix
(28) is general for any free fermion system. In
fact, the method we are going to develop can be
applied for a wide family of models. In the ther-
modynamic limit (N → ∞) the previous sum
becomes an integral, which can be determined
analytically. In fact, the sum can be computed
in closed form even for finite N . Let x = 2πk/N ,
∆x = 2π/N and pc = 2πkc/N = arccos(λ/2).
The latter is the so-called Fermi momentum.
The correlation matrix of the block of L fermions
in position space is then

Amn ≡
〈
a†man

〉
= lim

∆x→0

1

π

pc∑
x=0

∆x cos [x (m− n)]

=
1

π

∫ pc

0
dx cos [x (m− n)]

=
1

π

sin [pc(m− n)]

m− n
(29)

with m,n ∈ {0, 1, . . . , L − 1}. Note that, since
Amn depends on m and n through m − n only,
we can thus take m,n ∈ {1, . . . , L}, which will
slightly simplify the notation. This type of ma-
trices are known as Toeplitz matrices, and we

will make use of their properties to determine
the asymptotic value of the entropy in the ther-
modynamic limit (see Section V).

Wick’s theorem, extensively used for free par-
ticles in quantum field theory, can also be applied
to the XX chain fermionic operators. Namely,
any operator acting on the block can be ex-
pressed in terms of the correlation matrix Amn.
For instance,〈

a†ka
†
l aman

〉
=

〈
a†ka
†
l aman

〉
−
〈
a†l a

†
kam an

〉
+

〈
a†l am a

†
kan

〉
= 0−

〈
a†kam

〉〈
a†l an

〉
+
〈
a†kan

〉〈
a†l am

〉
where AB is the fermionic pairing between oper-
ators A and B. This is due to the fact that the
ground state of the chain is Gaussian with re-
spect to the set of operators {am, a†m}0≤m≤N−1,
that is〈

a(†)
m

〉
= 0, a(†)

m a(†)
n =

〈
a(†)
m a(†)

n

〉
∈ C (30)

for all m,n ∈ {0, . . . , N − 1}.
On the other hand, the correlation matrix

Amn could also be computed through the den-
sity matrix as any expectation value:

Amn = tr
(
a†manρ

)
(31)

As a†m and an act on the block of the first L sites
only, this must be equal to the partial trace of
the reduced density matrix of the block L

Amn = trL

(
a†manρL

)
(32)

The correlation matrix A ≡ (Amn)1≤m,n≤L is
Hermitian, and hence can be diagonalised via a
unitary transformation U ≡ (upq)1≤p,q≤L, that
is

UAU† = diag(ν1, . . . , νL) ≡ G (33)

where ν1, . . . , νL are the eigenvalues of A. Let
us introduce the operators

gp =
L∑

m=1

upm am (34)
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where the bar denotes the complex conjugate,
which verify the canonical anticommutation re-
lations, since U is unitary. Their correlation ma-
trix is G, namely

trL

(
g†pgqρL

)
=
〈
g†pgq

〉
= νpδpq (35)

with 1 ≤ p, q ≤ L, on account of Eq. (33). The
matrix representation of these operators in their
computational basis is

gm =

(
0 0
1 0

)
, g†m =

(
0 1
0 0

)
. (36)

Consider now the operators [7]:

O(0)
p ≡ g†pgp, O(1)

p ≡ gpg†p
O(2)
p = gp, O(3)

p = g†p
(37)

It is straightforward to check (e.g., making use
of the matrix representation) that these opera-
tors are orthonormal with respect to the stan-
dard Hilbert-Schmidt inner product, that is

tr
(
O(α)†
p O(β)

p

)
= δαβ (38)

It follows that the operators {Oα1
0 · · ·O

αL
L : 0 ≤

αi ≤ 3} form an orthonormal basis of linear op-
erators HL → HL, where HL is the Hilbert space
of the block (and HL ⊗HN−L the Hilbert space
of the complete chain). In fact, if we make use
of the multiplicative property of the trace with
respect to tensor products we get [25]

trL

[(
O

(α1)
1 · · ·O(αL)

L

)†
O

(β1)
1 · · ·O(βL)

L

]
= ± trL

[
O

(α1)†
1 O

(β1)
1 · · ·O(αL)†

L O
(βL)
L

]
= ±

L∏
i=1

tr
(
Oαi†i Oβii

)
= δα1β1 · · · δαLβL

(39)

We can hence write the reduced density matrix
of the block at the ground state in terms of this
basis:

ρL =
∑

1≤α1,...,αL≤3

ρα1···αL
L (40)

with

ρα1···αL
L = trL

[(
O

(α1)
1 · · ·O(αL)

L

)†
ρL

]
(41)

Since the operators O
(αp)
p (and their adjoints) act

only on HL, we have

ρα1···αL
L = tr

[(
O

(α1)
1 · · ·O(αL)

L

)†
ρ

]
≡
〈
O

(α1)
1 · · ·O(αL)

L

〉
.

(42)

It can be shown that the ground state
is also Gaussian with respect to the set
{gp, g†p}0≤p≤L−1, and thus the matrix elements
ρα1···αL
L are expressible in terms of the second mo-

ments of the operators gp and g†p. Furthermore,
since

〈bibj〉 =
〈
b†ib
†
j

〉
= 0 (43)

by linearity we have

〈gpgq〉 =
〈
g†pg
†
q

〉
= 0 (44)

Additionally, by equation (35) we have〈
g†pgq

〉
= νpδpq,

〈
gpg
†
q

〉
= (1− νp)δpq (45)

From Wick’s theorem and equation (42) it then
follows that the only matrix elements ρα1···αL

A

that do not vanish are those with αp ∈ {0, 1}
for all p. We then have

ρα1···αL
L =

L∏
i=1

µi(αi) (46)

with µi(0) = νi and µi(1) = 1− νi, and thus

ρL =
L∏
p=1

∑
αp∈{0,1}

µp (αp)O
(αp)

=
L∏
p=1

[
νpg
†
pgp + (1− νp)gpg†p

] (47)

Hence ρL is uncorrelated, and can be written as
the tensor product:

ρL ≡ %1 ⊗ · · · ⊗ %L (48)

with % = νlg
†
l gl + (1 − νl)glg

†
l . In terms of its

matrix representation (in basis of modes of the

operators gp and g†p)

%p =

(
νp

1− νp

)
, (49)
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Since the von Neumann entropy is additive, the
entanglement entropy of the block is then, by its
its definition (4),

SL =
L∑
l=1

S[ρ`] =
L∑
l=1

H2(νl), (50)

where

H2(x) = −x log x− (1− x) log(1− x) (51)

is the binary entropy.

To sum up, we have obtained an exact for-
mula for the entanglement entropy of the ground
state of a block of L adjacent spins for the XX
model in terms of the eigenvalues νl of its correla-
tion matrix. We should emphasise the computa-
tional efficiency of this method, since its compu-
tational cost scales polynomially with the num-
ber of spins of the block, O(L3) [26], whereas the
Hilbert space of the block is 2L-dimensional.

It is worth noting that there is no need to in-
vert the Jordan-Wigner transformation back to
the spin basis. This is due to the fact that the
Schmidt coefficients of the ground state are iden-
tical when written in terms of the spin basis or in
terms of the fermionic creation and annihilation
operators. Namely,

|GS〉 =
∑

l0,...,lN−1

Cl0,...,lN−1
(a†0)l0 · · · (a†N−1)lN−1 |0〉

=
∑

l0,...,lN−1

Cl0,...,lN−1
|l0 · · · lN−1〉 ,

(52)
where li ∈ {0, 1} for i ∈ {0, · · · , N − 1}, li = 0
(resp. li = 1) corresponds to the spin at site i
pointing downwards (resp. upwards).

Let us keep in mind that the only particular-
ity of the XX model is still its dispersion relation,
more specifically the value of pc. In fact, the cor-
relation matrix method is quite general. It works
for any dimension [9], for arbitrary quadratic
Hamiltonians and even at finite temperature. It
has hence been used in a large number of scenar-
ios, such as homogeneous chains, defect problems
or random systems. This approach is equally
applicable to coupled oscillators in the ground
state.

IV. SCALING OF ENTANGLEMENT

The procedure explained above provides an
effective way for evaluating the entanglement en-
tropy SL for any fixed L. However, Eq. (50)
as its stands does not yield itself to the deter-
mination of the asymptotic behaviour of SL as
L→∞, which as we shall see is crucial for ascer-
taining the criticality properties of the system.
This asymptotic behaviour can, however, be de-
termined using a method developed by Jin and
Korepin [7], based on the Fisher-Hartwig conjec-
ture for Toeplitz matrices, that we shall outline
in the next section. To formulate Jin and Kore-
pin’s result we define the scaling variable

L := L

√
1−

(
λ

2

)2

, λ < 2 (53)

in terms of which the entanglement entropy
scales as [7]

SL ≈


L
π log

(
π
L
)
, if 0 < L � 1

1
3 log (2L) + Υ1, if L � 1

(54)

where Υ1 is a non-universal constant (see next
section for more details). First, let us consider a
case in which the asymptotic behaviour is partic-
ularly easy to determine, namely when pcL� 1
and therefore pc � 1/L � 1. The correlation
matrix is given by

Amn =

{
1
π

1
m−n

[
pc(m− n) +O (pc(m− n))2

]
, m 6= n

pc
π , m = n

' pc
π
,

(55)
or in matrix form

A ≡ (Amn) ' pc
π


1 1 · · · 1 1
1 1 · · · 1 1
...

...
. . .

...
...

1 1 · · · 1 1
1 1 · · · 1 1


L×L

. (56)

With elementary algebra methods we can obtain
the eigenvalues of the matrix above, which turn
out to be ν = pcL/π and ν = 0, with multiplicity
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Figure 4. Exact entropy of a block of L spins in the
ground state for the XX model with λ = 2 − 10−10,
and fitting to Eq. (54) and to H2(L).

1 and L−1 respectively. The entropy of the block
is therefore

SL = H2

(
pcL

π

)
' −pcL

π
log

(
pcL

π

)
=
pcL

π
log

(
π

pcL

) (57)

where in the approximation we have again taken
into account that pcL� 1, and then the second
term in Eq. (51) dominates over the first one [27].
This case occurs when the Fermi momentum pc
is given by pc = arccos(λ/2)� 1, and thus λ→
2−.

The case above corresponds to equation (54)
for 0 < L � 1. Indeed,

λ→ 2− ⇐⇒ pc → 0+ ⇒ L = L sin pc ' Lpc

In Figure 4 we can see the dependence of SL on
L for λ→ 2−, as well as a fitting to the first line
in Eq. (54) and to H2(L).

We are interested in the scaling of the en-
tanglement entropy as the size L of the block
of spins we are considering grows. For quantum
chains this scaling largely reflects the critical be-
haviour of the system, and its related behaviour
under conformal transformations as we shall now
explain. It is widely known that the thermody-
namic entropy has an extensive nature, in other
words, it shows volume scaling. However, this
behaviour is not encountered in the entangle-
ment entropy of typical ground states [3], where
an area law, or an area law with a small (fre-
quently logarithmic) correction, appears instead.

This roughly means that if a certain region is
considered, its entanglement entropy grows pro-
portionally to the size of its boundary.

Area laws are particularly important in one-
dimensional systems, where the boundary of a
block consist of only two sites for periodic bound-
ary conditions. An area law then implies that the
entropy of the chain is upper bounded by a cer-
tain constant independent of the block size L and
the chain size N , i.e. S(ρL) = O(1). Whether
this area law holds or not largely depends on
the criticality of the system. We say that the
system is non-critical whenever the energy gap
∆E between the ground state and the first ex-
cited state satifies ∆E ≥ c > 0 as N → ∞, for
a certain size-independent constant c. The en-
tanglement entropy saturates for a gapped sys-
tem away from the critical point, and hence an
area law holds [28]; whereas when the system
is critical the numerical study indicates an un-
bounded growth of the entropy. More specifi-
cally, in fermionic one-dimensional systems (such
as the XX chain, via the Jordan-Wigner trans-
formation) SL is O(logL) in the “gapless” (crit-
ical) phase and, typically, O(1) in the “gapped”
(non-critical) phase. In the latter case, SL usu-
ally tends to a constant, which is 0 in the model
that concerns us. This is again a manifestation
of the area law for d-dimensional systems, whose
respective laws would be Ld−1 logL and Ld−1, L
being a characteristic length.

The XX model is critical for λ ≤ 2. Let us
recall that we are assuming that λ ≥ 0. For
λ > 2 the dominant term of the Hamiltonian
(10) is always positive and proportional to the
number operator of fermionic occupation modes,
hence there is a non-zero energy gap for every
system size and the system is non-critical in this
range of λ. On the contrary, for λ < 2 the hop-
ping of spins between neighbouring sites dom-
inates. If we look at the energy modes (17)
of the Fourier-transformed Hamiltonian (16) we
can make certain Λk arbitrarily close to zero as
N becomes larger, and thus the energy gap van-
ishes (∆E → 0 as N →∞). This illustrates the
phase transition that takes place at λ = 2.

Since a one-dimensional gapless system has
no natural scale (which the gap ∆E would pro-
vide, as it has units of length−1 for ~ = 1), it
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is invariant under dilations. Hamiltonians in-
variant under translations, rotations and scal-
ing transformations usually turn out to have the
symmetry of the larger conformal group [10] –the
set of transformations that do not change the an-
gles between two arbitrary curves crossing each
other at some point. In such a case, the model
is equivalent to a certain conformal field theory
(CFT) in the low-energy regime. The univer-
sality class of these theories (see Appendix A)
is the central charge c, a parameter that roughly
quantifies the “degrees of freedom” of the theory.
More specifically, c is an operator that commutes
with all the other generators of the Virasoro al-
gebra. Classically the central charge is zero, and
it appears quantically as an additive term in the
classical commutation relations for the (infinite-
dimensional) Virasoro algebra. If a certain one-
dimensional system is critical, knowing its uni-
versality class (i.e., the c of the effective CFT to
which it is equivalent at low energies) is crucial.
The asymptotic behaviour of SL happens to be
one of the most powerful tools to determine this
parameter. In fact, a necessary (but generally
not-sufficient) condition for a system to be criti-
cal is that SL be proportional to logL as L→∞
[29]. If this happens, its central charge can be
computed by evaluating limL→∞ SL/ logL. This
limit can be calculated analytically for the XX
model, making use of Eq. (54), namely

SL '
1

3
logL+ γ1(λ), (58)

with

γ1(λ) := Υ1+
1

3
log (2 sin pc) = Υ1+

1

6
log
(
4− λ2

)
(59)

where Υ1 is a constant that was determined an-
alytically by Jin and Korepin.

In Figure 5 we can observe the variation of the
entropy with L for different values of the mag-
netic field. The maximum entropy appears for
λ = 0, when there is no external magnetic field
to which spins tend to align. Furthermore, we
can see that for both values of λ the leading scale
of the entropy is perfectly fitted by Eq. (58).

0 50 100 150 200 250
L

0.5

1.0

1.5

2.0

2.5

S L

= 0
= 1.9

Eq. (59) with = 0
Eq. (59) with = 1.9

Figure 5. Exact entropy of a block of L spins in the
ground state for the XX model and fitting to Eq. (58).
Note that the maximal entropy is reached in the ab-
sence of external magnetic field (λ = 0). The entropy
decreases with the increase of λ until at λ = 2 a phase
transition occurs, the system reaches the ferromag-
netic limit, the ground state becomes a product state
in the spin basis and SL = 0.

V. TOEPLITZ DETERMINANT

We shall now make use of the fact that the
correlation matrix is a Toeplitz matrix. This
type of matrices have been widely studied in
mathematics. More specifically, the Fisher-
Hartwig conjecture [14], which has been proven
for certain cases by Basor [15] and by Böttcher
and Silbermann [16], provides the asymptotic be-
haviour of a Toeplitz matrix determinant when
its size goes to infinity. The application of this
conjecture (in this case, actually theorem) for the
computation of the XX model entanglement en-
tropy in the thermodynamic limit was first pro-
posed by Jin and Korepin in Ref. [7].

Let us recall that a matrix T is Toeplitz if its
elements Tij depend only on i − j. Let c(z) be
a complex-valued function defined on the unit
circle S1 = {z ∈ C : |z| = 1}. Then its Fourier
coefficients cn (n ∈ Z) are defined by

cn =
1

2πi

∫
|z|=1

c(z)z−n−1dz

≡ 1

2π

∫ 2π

0
c
(
eiθ
)
e−inθ dθ

(60)

Since the integrand has 2π-periodicity, the inte-
gration range can be taken as an arbitrary inter-
val of length 2π. For any L ∈ N, the function
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c : S1 → C defines a Toeplitz matrix TL [12] of
order L via the relation

(TL)ij = ci−j , 1 ≤ i, j ≤ L (61)

The function c is called the symbol of the
Toeplitz matrix TL. The Fisher-Hartwig conjec-
ture applies to Toeplitz matrices whose symbol
verifies certain requirements (see Appendix B).
For more technical details see Refs. [7, 12].

We shall be mainly interested in the case in
which the Toeplitz matrix is TL = µ−(2AL−1),
where µ is a spectral parameter and AL is the
correlation matrix of a block of L spins. The de-
terminant of TL is the characteristic polynomial
of AL, DL(µ) ≡ det(µ+1−2AL) = det TL. For
the XX model (or any model with a monotonic
dispersion relation), it can be shown that

DL(µ) =(2L sin pc)
−2β2

(µ+ 1)L
(
µ+ 1

µ− 1

)−Lpc/π
×G(1 + β)2G(1− β)2 [1 +O (1)] ,

(62)
with

β =
1

2πi
log

(
µ+ 1

µ− 1

)
, (63)

and

G(1 + z)G(1− z) =e−(1+γ)z2

×
∞∏
n=1

[(
1− z2

n2

)n
ez

2/n

]
.

(64)
Eq. (62) is precisely the formula used by Jin
and Korepin [7] for determining the asymptotic
behaviour of the ground-state entanglement en-
tropy of the XX model.

In order to complete the proof of the asymp-
totic formula for the entanglement entropy of the
XX model (58), we shall now rewrite the general
expression for the entanglement entropy (50) as
a complex integral. Each eigenvalue νl in the
right-hand side of Eq. (50) can be regarded as a
residue for a suitable integral. Let us introduce
ν̃ ≡ 2ν − 1 ∈ [−1, 1] and

e(x, ν̃) =− x+ ν̃

2
log

(
x+ ν̃

2

)
− x− ν̃

2
log

(
x− ν̃

2

)
,

(65)

iδ

−iδ 1−1

ε/2ε/2

1 + ε−1− ε

Figure 6. Integration path C(ε, δ). Zigzag lines rep-
resent the branch cuts. The poles {ν̃1, . . . , ν̃L} lie on
the real line and on the interval [−1, 1].

so that e(1, ν̃) is equal to the Shannon binary
entropy (51). The logarithm is analytic in the
domain C\{z ∈ C : Re(z) ≤ 0 and Im(z) = 0}.
Therefore the function e(1 + ε, z) has a logarith-
mic branch cut on the set |Re z| ≥ 1 + ε and
no other singularities. Let C(ε, δ) be a closed
path that encircles all the zeros of DL(µ), and
such that e(1+ε, z) is analytic over the path (cf.
Fig. 6).

Let us briefly recall Cauchy’s residue theorem
[17]. Let U be an open set, and C a closed curve
in U such that C is homologous to 0 in U . Let
f(z) be analytic on U except for a finite num-
ber of points z1, . . . , zL. For our purposes we
can assume that C has winding number equal to
1 around each of these singularities. Then the
integral of f(z) around C is given by

∮
C
f(z) dz = 2πi

L∑
k=1

Res(f ; zk), (66)

where Res(f ; zk) is the residue of f(z) at zk. If
f has a simple pole at z0 and g is holomorphic
at z0 (differentiable in a neighbour of z0), then

Res(fg; z0) = g(z0) Res(f ; z0) (67)

Finally, suppose f(z0) = 0 but f ′(z0) 6= 0. Then
1/f has a pole of order 1 at z0 and its residue is
1/f ′(z0). Therefore, if f is of this kind and g is
holomorphic at z0 we have

Res

(
g

d log f

dz
; z0

)
= Res

(
g
f ′

f
; z0

)
= g(z0)f ′(z0) Res

(
1

f
; z0

)
= g(z0)f ′(z0)

1

f ′(z0)
= g(z0)

(68)
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We can now compute the line integral

I(ε, δ) =

∮
C(ε,δ)

e(1 + ε, µ) d logDL(µ)

=

∮
C(ε,δ)

e(1 + ε, µ)
D′L(µ)

DL(µ)
dµ,

(69)

whose only poles are simple, and correspond to
the L zeros of DL(µ) at µ = ν̃k (k = 1, . . . , L),
and where C(ε, δ) is the path sketched in Fig. 6.
Its corresponding residues are

Res

(
e(1 + ε, µ)

d logDL(µ)

dµ
; ν̃k

)
= e(1 + ε, ν̃k),

(70)
then by the Cauchy’s residue theorem we have

I(ε, δ) = 2πi
L∑
k=1

e(1 + ε, ν̃k). (71)

If we now take the limits ε, δ → 0+ we get the
entanglement entropy:

lim
ε→0+

lim
δ→0+

1

2πi
I(ε, δ) =

L∑
k=1

e(1, ν̃k)

=
L∑
l=1

H(νl) = SL

(72)

Note that this cannot be done by integrating
e(1, µ) directly, since the integration path would
enclose branch cuts in |µ| ≥ 1. Instead, we have
to move the branch cuts to |µ| ≥ 1 + ε, take a
path that does not cross those intervals (such as
the one in Fig. 6) and then take the limit ε→ 0.
The straight segments are taken outside the real
line (δ > 0) so that the poles do not lie on the
integration path. The integral is independent of
δ, by the deformation theorem, as long as δ > 0.
However, once we replace Dµ by its asymptotic
expression the integral does depend on δ, and we
have thus taken the δ → 0+ limit.

We can now obtain the asymptotic form of
the entanglement entropy [7]. For convenience,
let us define

Υ(µ) :=
∞∑
n=1

n−1β2(µ)

n2 − β2(µ)
(73)

Taking the logarithmic derivative of DL(µ) in
Eq. (62), we get

d logDL(µ)

dµ
=− 4β(µ)β′(µ) log (2L |sin pc|)

+

[
1

µ+ 1
− pc
π

(
1

µ+ 1
− 1

µ− 1

)]
L

+ 2
d

dµ
log [G(1 + β)G(1− β)]

(74)
Making use of the Eqs. (63) and (64) we have

β′(µ) =
1

2πi

(
1

µ+ 1
− 1

µ− 1

)
= − 1

iπ

1

(1 + µ)(1− µ)
,

(75)
and

d

dz
log [G(1 + z)G(1− z)]

=
d

dz

[
−(1 + γ)z2 +

∞∑
n=1

n log

(
1− z2

n2

)
+
z2

n

]

= −2(1 + γ)z + 2

∞∑
n=1

(
−n z/n2

1− z2/n2
+
z

n

)

= −2(1 + γ)z − 2
∞∑
n=1

z

(
n

n2 − z2
− 1

n

)

= −2z

[
(1 + γ) +

∞∑
n=1

z2/n

n2 − z2

]
,

(76)
so the logarithmic derivative of DL(µ) results

d logDL(µ)

dµ
'
[
1− pc/π

1 + µ
− pc/π

1− µ

]
L− 4β(µ)

iπ(1− µ2)

×[logL+log(2sin pc)+(1+γ)+Υ(µ)] .
(77)

We can now substitute the asymptotic form
above into Eq. (69):

I(ε, δ) = I1(ε, δ) + I2(ε, δ), (78)

with

I1(ε, δ) =L

∮
C(ε,δ)

dµ e(1 + ε, µ)

[
1− pc/π

1 + µ
− pc/π

1− µ

]
I2(ε, δ) =− 4

iπ

∮
C(ε,δ)

dµ e(1 + ε, µ)
β(µ)

1− µ2

× [logL+log(2 |sin pc|)+(1+γ)+Υ(µ)]
(79)
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where the contour is taken as shown in Fig. 6.
The first integral in the Eq. above can be eval-
uated by making use of the residue theorem and
noting that the only residues are of the form (67).
Indeed, let

I1(ε, δ) ≡ L
∮
C
e(1 + ε, µ)

(
1

f+(µ)
+

1

f−(µ)

)
dµ,

f+(µ) =
1 + µ

1− pc/π
, f−(µ) = −1− µ

pc/π

Since e(1 + ε, δ) is holomorphic in the region
enclosed by C(ε, δ) and the only singularities of
the integrand are the simple poles of f−1

± (µ) at
µ = ∓1 we have

I1(ε, δ) =2πiL

[
e(1 + ε,−1) Res

(
1

f+
,−1

)
+e(1 + ε, 1) Res

(
1

f−
, 1

)]
and taking the limit ε→ 0 the integral vanishes,
since e(1,±1) = 0. In other words, the linear
term in L for the entanglement entropy vanishes
when L → ∞. The second integral can be writ-
ten as follows:

I2(ε, δ) =

(∫
	

+

∫
→

+

∫
�

+

∫
←

)
(· · · ) dµ

(80)
where 	 and � represent the right and left cir-
cular arcs respectively, while← and→ represent
the upper and lower straight segments. Note
that the arcs are mapped to each other under
µ 7→ −µ. Since the integrand in I2 is odd in
µ, the integrals along both arcs exactly cancel.
Therefore, the entanglement entropy is given by

SL = lim
ε→0+

2

π2

(∫ −1+i0

1+i0
+

∫ 1+i0

−1+i0

)
e(1 + ε, µ)

× [logL+ log(2 |sin pc|) + (1 + γ) + Υ(µ)]

× β(µ)

1− µ2
dµ,

(81)
For further simplification, we shall make use of
the fact that

β(x± i0) =
1

2iπ

[
log

(
1 + x

1− x

)
∓ i(π ∓ 0s)

]
=− iW (x)∓ 1

2
,

(82)

for x ∈ (−1, 1) and

W (x) =
1

2π
log

(
1 + x

1− x

)
(83)

The entanglement entropy can now be expressed
as

SL =
2

π2
[logL+ log(2sin pc) + (1 + γ)]

∫ 1

−1

e(1, x)

1− x2
dx

+
∞∑
n=1

2n−1

π2

∫
e(1, x)

1− x2

[
(1/2 + iW (x))3

n2 − (1/2 + iW (x))2

+
(1/2− iW (x))3

n2 − (1/2− iW (x))2

]
dx,

(84)
where we have replaced Υ(µ) by its definition
(73). The first of these integrals can be com-
puted exactly with elementary calculus methods,
yielding

2

π2

∫ 1

−1

e(1, x)

1− x2
dx

=
2

π2

∫ 1

−1

1

1− x2

[
−1 + x

2
log

(
1 + x

2

)
−1− x

2
log

(
1− x

2

)]
dx =

1

3
(85)

The second integral in Eq. (84) can be expressed
as

Υ0 =

∞∑
n=1

n−1

π2

∫ 1

−1
dx

[
− 1

1− x
log

1 + x

2

− 1

1 + x
log

1− x
2

]
×

[ (
1
2 + iW (x)

)3
n2 −

(
1
2 + iW (x)

)2 +

(
1
2 − iW (x)

)3
n2 −

(
1
2 − iW (x)

)2
]

(86)
The asymptotic expression for the entanglement
entropy is thus

SL =
1

3
logL+

1

3
log sin pc+

1

3
log 2 +

1 + γ

3
+ Υ0

(87)
Applying the trigonometric relation
sin(arccosx) =

√
1− x2 and the expression

of pc for the XX model, pc = arccos(λ/2), we
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get

SL =
1

3
logL+

1

6
log

[
1−

(
λ

2

)2
]

+
1

3
log 2 +

1 + γ

3
+ Υ0

(88)

We can further simplify the expression for Υ0

(see Appendix C) and finally write

SL =
1

3
logL+

1

6
log

[
1−

(
λ

2

)2
]

+
1

3
log 2 + Υ1,

(89)

with

Υ1 =

∫ ∞
0

[
−e
−t

3t
− 1

t sinh2(t/2)
+

cosh(t/2)

2 sinh3(t/2)

]
dt

' 0.495018.
(90)

For the sake of clarification, let us summarize
this last section. We have made use of the
fact that the correlation matrix A of the XX
model (or any suitable free fermion system) is
a Toeplitz matrix, and thus the matrix T =
µ+ 1− 2A (whose determinant is the character-
istic polynomial of A) is also Toeplitz. Consid-
ering the case of the Fisher-Hartwig conjecture
proven by Basor, we have expressed det T for
large values of L. Afterwards, we have rewrit-
ten the exact expression for the entanglement
entropy as an integral along a complex contour
involving det T. We have finally inserted the ap-
proximate expression of det T furnished by the
Fisher-Hartwig conjecture and evaluated the re-
sulting integral. We have shown the dependence
of the entanglement entropy with L is logarith-
mic, with central charge c = 1, just like CFT
predicted. Moreover, we have obtained the value
of the constant term.

VI. CONCLUSIONS AND OUTLOOK

In this paper we explore entanglement en-
tropy as a quantitative measure for the amount
of entanglement between a block of spins and the
rest of a chain in the ground state. We regard
the von Neumann entropy as the entanglement

entropy and we focus on the XX chain for ex-
plicit computations. However, our results are
easily extended [30] to any spin chain or one-
dimensional free fermion system with a mono-
tonic dispersion relation. Moreover, the proce-
dures and results developed for the von Neu-
mann entropy are applicable for the Rényi en-
tropy as well with inessential modifications.

We have introduced the XX model, which
consists on a chain of spin-1

2 particles with near-
est neighbour interactions in an external mag-
netic field, whose only degrees of freedom corre-
spond to the spin projections |↑〉 and |↓〉. The
Jordan-Wigner transformation maps spin chains
such as the XX model into free fermion systems.
Fermionic creation and annihilation operators
are defined by Eq. (8). These operators ver-
ify the canonical anticommutation relations, at
the cost of making the interactions become non-
local. The state with every spin down in the z-
direction, |↓ · · · ↓〉, is mapped into the fermionic
vacuum state, |0 · · · 0〉. The resulting Hamilto-
nian is translationally invariant and preserves
the number of fermions. It can thus be diago-
nalised via a Fourier transform. (In fact, even if
the number of fermions were not preserved, the
Hamiltonian could be diagonalised via an addi-
tional Bogoliubov transformation.) The energy
of the k-th momentum mode is characteristic of
each model and defines the dispersion relation,
given by Eq. (17) for the XX model.

Through the correlation matrix method we
have obtained an exact expression for the en-
tanglement entropy of a block with L spins in
terms of the eigenvalues of the correlation ma-
trix (50). This remarkable technique reduces the
problem of diagonalising a 2L×2L density matrix
ρL to the polynomial problem of diagonalising
the L× L correlation matrix A.

In the case of the XX chain, the Fermi mo-
mentum pc is given by pc = arccos(λ/2). If
λ > 2 the magnetic field dominates over the hop-
ping between spins, so that Λk > 0 for every k.
The ground state is a product state (the vacuum
state in the fermionic basis) and thus its entan-
glement entropy vanishes. On the other hand,
if 0 ≤ λ < 2, the hopping dominates, and the
negative energy momentum modes become ex-
cited in the ground state. In the latter case, the
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ground state is a mixed state with non-zero en-
tanglement entropy. At λ = 2 the ferromagnetic-
critical phase transition takes place.

We have also studied the scaling of the en-
tanglement entropy with the size of the system
and its asymptotic behaviour. The scaling of
the entanglement entropy as L → ∞ is related
with criticality and the system’s invariance un-
der conformal transformations. The entangle-
ment entropy of one-dimensional fermionic sys-
tems behaves as O(logL) in the gapless (critical)
case, and as O(1) in the gapped (non-critical)
one. Gapless systems have no natural scale and
they are therefore invariant under dilations. If
the Hamiltonian happens to be invariant under
the full conformal group, the model is equivalent
to a CFT in the low-energy regime. The uni-
versality class of a CFT is given by its central
charge c, which can be computed by evaluating
SL/ logL for L → ∞. For the XX model this
limit can in fact be calculated analytically, mak-
ing use of the Fisher-Hartwig conjecture for the
asymptotic behaviour of Toeplitz determinants.
The central charge for this model happens to be
c = 1, and hence the XX model falls into the
universality class of a free boson [1].

A scaling variable L, which depends on the
value of the external magnetic field through λ,
can be defined for the XX chain, so that the en-
tanglement entropy of the block scales as

SL ≈


L
π

log
(π
L

)
if L � 1

1

3
log (2L) + Υ1 if L � 1

, (91)

with

L := L

√
1−

(
λ

2

)2

for λ < 2, (92)

where Υ1 ' 0.495018 is a constant defined in
terms of a definite integral that can be evaluated
numerically. We could have obtained the Rényi
entanglement entropy in a similar fashion. The
results are in fact considerably resemblant to the
von Neumann entanglement entropy, namely [7]

Sα (ρL) =

{
1

1−α log
[(L
π

)α
+
(
1− Lπ

)α]
, L � 1,

1+α−1

6 log (2L) + Υ
{α}
1 , L � 1.

(93)

For the sake of simplicity, we have only made
explicit calculations for the XX chain. Never-
theless, the method exposed could be applied for
any free fermion system, or a system equivalent
to it via a Jordan-Wigner transformation, at zero
temperature. The XY chain [1, 3, 8] is a more
general model whose Hamiltonian can be written
as

HXY = −1

2

N−1∑
l=0

(
1 + γ

2
σxlσ

x
l+1+

1− γ
2

σylσ
y
l+1+λσzl

)
,

(94)
where the γ parameter determines the degree of
anisotropy of the spin-spin interaction in the XY
plane. In particular, for γ = 0 we recover the
XX model, whereas if γ = 1 it becomes the well-
known quantum Ising model with a transverse
magnetic field. The XY model with γ 6= 0 is
critical for λ = 1. In this case, the entropy of a
block scales as

SXY(L) ' 1

6
logL+ a (γ) , (95)

where a(γ) is a function of γ that depends on
the Fermi momentum pc. This behaviour corre-
sponds to the scaling dictated by a CFT with
c = 1/2, i.e. the universality class of a free
fermion. In the non-critical case (λ 6= 1), the
entanglement entropy saturates to a constant.
Moreover, the exact relation between the en-
tropies of the XY model and the quantum Ising
model was found in Ref. [19]. Making use of this
relation it is possible, among other results, to
obtain the effective central charge of the random
XY chain, as well as the additive constant of the
entropy for the critical homogeneous quantum
Ising chain. Other models for which similar tech-
niques can be applied include the XXZ model [1]
and su(1|1) supersymmetric chains [11, 12].

There are several open lines of research sug-
gested by the present work, namely:

• The scaling of the entanglement entropy
for thermal –non-zero temperature– states
of the XX model has been recently esti-
mated through CFT techniques and nu-
merical simulations in Ref. [20].

• The search for exact expressions for the
entanglement entropy for models beyond



17

quasifree and conformally invariant sys-
tems [3], both in one and higher dimen-
sions, is also an open area of research.

• The asymptotic behaviour of the entan-
glement entropy for models whose corre-
lation matrix is not Toeplitz, or does not
verify the conditions required by proven
cases of the Fisher-Hartwig conjecture, is
tough to determine. However, for some of
these models their connection with a suit-
able CFT can be exploited to derive the
asymptotic behaviour of the entanglement
entropy. This idea has been successfully
applied to the inhomogeneous XX chain
so-called rainbow chain in Ref. [21]. In
fact, the connection between general in-
homogeneous XX chains and quasi-exactly
solvable models has been recently studied
in Ref. [13].

• The notion of area law (i.e. the satura-
tion of SL for L → ∞) acquires con-
siderably more complexity for higher di-
mensions, where the boundary of a re-
gion becomes a non-trivial object. In the
present state-of-the-art [3], the question
whether the entanglement entropy of a
(higher-dimensional) subregion fulfills an
area law has only been solved rigorously
for quasifree bosonic and fermionic models
at zero temperature. Even in such mod-
els, the technical details involved are quite
intricate. These models can be consid-
ered as a “laboratory” for more general
systems. Area laws are not always satis-
fied, and they are expected to hold when-
ever one has a gapped and local model,
when a length scale is provided by the
correlation length, as “laboratory” models
and numerical studies suggest. The suffi-
cient conditions to ensure that a higher-
dimensional critical system satisfies an
area law are still undetermined. Area laws
seem to be connected with geometry, as it
was recently emphasized in Ref. [22].

• Finally, the above results may provide
new perspectives for problems related with

quantum entanglement in quantum in-
formation theory, many-body systems or
high-energy physics.
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Appendix A: Conformal field theory

In general, critical models exhibit a divergent
correlation length, thus they become scale invari-
ant and allow for a general description of confor-
mal field theories [3]. According to the univer-
sality hypothesis, the microscopic details become
irrelevant for numerous crucial properties, which
depend only on basic properties such as the sym-
metry of the system or the spatial dimension.
Models belonging to the same universality class
are characterized by the same fixed-point Hamil-
tonian –a Hamiltonian that is mapped to itself–
under renormalization transformations, which is
invariant under general rotations. Conformal
field theory provides a description for such con-
tinuum models, which have the symmetries of
the conformal group (including translations, ro-
tations and scalings). As we already mentioned,
the universality class is characterized by the cen-
tral charge c, a parameter that roughly quanti-
fies the “degrees of freedom” of the theory. More
specifically, c is an operator that commutes with
all the other symmetry operators, and the ad-
jective “central” is referred to the centre of the
symmetry group. For free bosons and the XX
model c = 1, whereas the Ising universality class
has c = 1/2.

Knowing that a model can be described by
a conformal field theory (CFT) grants robust
methods to compute universal properties, as well
as entanglement entropies of subsystems. This
methods are available for (1+1)-dimensional sys-
tems, i.e. with one spatial dimension. To start
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with, we note that the powers of the reduced den-
sity matrix ρnL can be computed for any positive
integer n. The series

tr [ρnL] =
∑
j

λnj (A1)

where {λj}Lj=1 are the eigenvalues of of ρL, is ab-
solute convergent and analytic. As the derivative
exists, we can make use of the “replica trick” to
compute the entanglement entropy, namely,

S(ρL) = lim
n→1
− ∂

∂n
tr [ρnL] (A2)

Indeed,

∂

∂n
tr [ρnL] =

∂

∂n

L∑
i=1

λni =
∂

∂n

L∑
i=1

en log λi

=

L∑
i=1

log λi e
n log λi n→1−−−→

L∑
i=1

λi log λi

In 1 + 1 dimensions this leads to the expression

S (ρL) =
c

3
log

(
L

a

)
+O(1) (A3)

where L is the length of the block, a is an ultravi-
olet cut-off, corresponding to a lattice spacing, to
avoid ultraviolet divergence. Moreover, if one is
close to the critical point, where the correlation
length ξ > 0 is large but finite, one can typically
still describe the system by a CFT. The domi-
nant term of the entanglement entropy is then

S(ρL) ∼ c

3
log

(
ξ

a

)
(A4)

The modern theory of continuous phase transi-
tions is based on quantum field theory (QFT).
This apparently unrelated subjects are con-
nected by the renormalization group (RG) the-
ory [10]. Let us consider a system whose Hamil-
tonian H(λ) depends on a tunable experimen-
tal parameter λ (the magnetic field strength in
the case of the XX model or the Ising model).
At the critical point λ = λc, the Hamiltonian
undergoes a continuous phase transition. Close
to λc, the correlation length (the only relevant
scale for long-distance physics) behaves like ξ =
|λ− λc|−ν , diverging at λc. Hence, at the criti-
cal point the system is scale invariant. The RG

transformations are, roughly speaking, practical
implementations of scale transformations. As we
mentioned, the universality hypothesis (in terms
of RG) means that different Hamiltonians shar-
ing the same universal characteristics flow to the
same fixed point, which completely determines
the long-distance behaviour. For instance, con-
sider a lattice model whose Hamiltonian is in-
variant under translations multiple of the lat-
tice spacing; whereas the resulting fixed point
Hamiltonian is typically invariant under arbi-
trary translations, and hence it can be described
with a continuum field theory. For the same rea-
son, the critical point Hamiltonian is usually ro-
tationally invariant as well.

These transformations of translations, rota-
tions and scaling form a group. We can exploit
its group properties to infer the form of certain
magnitudes. As an example, consider the corre-
lator of two scalar observables 〈φ(r1)− φ(r2)〉.

• By translational invariance, it can be only
a function of r1 − r2.

• By rotational invariance, it can depend
only upon the modulus ‖r1 − r2‖.

• For a scale transformation r 7→ br, it must
behave as

〈φ(r1)φ(r2)〉 = b2∆φ 〈φ(br1)φ(br2)〉 , (A5)

so that the the identity scaling b = 1 leaves
the correlator unchanged, and the action
of a scale transformation b and its inverse
1/b returns to the original correlator. The
exponent ∆φ is called scaling dimension of
the field φ. These three conditions can be
true if and only if

〈φ(r1)φ(r2)〉 = ‖r1 − r2‖−2∆φ (A6)

apart from a normalization constant we set equal
to 1.

Fixed point Hamiltonians invariant under
translations, rotations and scaling transforma-
tions usually turn out to have the symmetry of
the larger conformal group –the set of transfor-
mations that do not change the angles between
two arbitrary curves crossing each other in some
point. In a two-dimensional Euclidean space (or
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a 1 + 1-dimensional spacetime) this invariance
has outstanding consequences. In fact, it can
be proved that all the analytic functions f(z),
with z = x + iy, are conformal transformations
[10]. The resulting symmetry group is infinite-
dimensional and everything can be calculated,
in principle, analytically. For instance, under
a transformation of the form z 7→ w = w(z),
equation (A5) can be generalized to a space-
dependent scale factor b(z) = dw/dz ≡ w′(z),
obtaining

〈φ (z1)φ (z2)〉 =
(∣∣w′ (z1)w′ (z2)

∣∣)2∆φ

× 〈φ (w (z1))φ (w (z2))〉
(A7)

This equation relates the correlation function
of a scalar field on the plane, given by equation
(A6), to the one in an arbitrary geometry, e.g.
in a torus.

We need to introduce the so-called stress ten-
sor Tµν . Under an arbitrary transformation
xµ → xµ + εµ, the Euclidean action (the Hamil-
tonian for classical systems) changes as

S → S + δS, δS =:

∫
d2x Tµν∂µεν (A8)

The universality class (of minimal unitary
models) of two-dimensional CFT is characterized
by the central charge, which assumes only dis-
crete values. From the knowledge of the central
charge c we can compute all the critical proper-
ties of the model, such as the critical exponents
[10].

Consider a subsystem A formed by the points
x in the disjoint intervals (u1, v1), . . . , (uN , vN ).
An expression of the reduced density matrix ρA
may be found by stitching together those points
which are not in A. Then tr ρnA can be computed
by making n copies of the above and sewing them
cyclically along the cuts. Then

tr ρnA =
Zn(A)

Zn
(A9)

where Z is the partition function (that ensures
tr ρ = 1) and Zn(A) is the path integral on the
n-sheeted surface.

We now consider that A is a single interval
of length L in an infinitely long one-dimensional

quantum system, at zero temperature (e.g. the
asymptotic behaviour of the XX model). The ra-
tio (A9) is given by 〈0〉Rn , the vacuum expecta-
tion value in the n-sheeted surface. CFT allows
to obtain this expectation value from just know-
ing how it transforms under a general conformal
transformation [10]. This is formally given by
〈T (w)〉Rn , where T (w) is the holomorphic stress
tensor. To obtain 〈T (w)〉Rn , we need to map
the n-sheeted surface onto a geometry where the
mean value of the stress tensor is known, and
then make use of the transformation law,

T (w) =
(
z′′
)2
T (z) +

c

12

z′′′z′ − 3
2z
′′2

z′2
(A10)

We need to map the n-sheeted surface Rn to
the z-plane C, where by translational and rota-
tional invariance 〈T (z)〉C = 0. This mapping is

w 7→ z(w) = [(w − u)/(w − v)]1/n, and hence,
calculating the derivatives we obtain

〈T (w)〉Rn =
c
(
1− (1/n)2

)
24

(v − u)2

(w − u)2(w − v)2

(A11)

The correlator of T with two primary oper-
ators Φn(u) and Φ−n(v), with the same com-
plex scaling dimensions ∆n = ∆n = (c/24)[1 −
(1/n)2], is given by the conformal Ward identity
[10]:

〈T (w)Φn(u)Φ−n(v)〉C =

∆n

(w − u)2(w − v)2(v − u)2∆n−2(v̄ − ū)2∆n

(A12)
where Φ±n are normalized so that
〈Φn(u)Φ−n(v)〉C = |v − u|−4∆n . In the
above we are assuming that w is a complex
coordinate in a single sheet C, which is now
decoupled from the others. Therefore

〈T (w)〉Rn =
〈T (w)Φn(u)Φ−n(v)〉C
〈Φn(u)Φ−n(v)〉C

(A13)

The insertion of T (w) on each sheet is given
by (A12). To insert it on all the sheets, the right-
hand side gets multiplied by a factor n. As all the
properties under conformal transfromations are
determined by (A12), we conclude that (apart
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from a overall constant) tr ρnL behaves as the cor-
relation function of a primary operator Φn with
∆n = ∆n = (c/24)[1− (1/n)2], namely,

tr ρnL = cn

(
v − u
a

)−(c/6)(n−1/n)

(A14)

where the exponent is −4n∆n and a is inserted
to make the final result dimensionless. Since
tr ρL = 1, c1 must be unity. We can now make
use of the replica trick (A2) and finally show that

SL =
c

3
log

(
L

a

)
+ c′1 (A15)

where the constant c′1 is not universal.

Appendix B: Fisher-Hartwig conjecture

The Fisher-Hartwig conjecture applies to
Toeplitz matrices whose symbol verifies certain
requirements that we shall describe in the fol-
lowing paragraphs. More precisely, c should be
of the form

c(z) = b(z)
R∏
r=1

tβr

(
ei(θ−θr)

)
[2− 2 cos (θ − θr)]αr ,

(B1)
where Reαr > −1/2, b : S1 → C is a non-
vanishing smooth function with zero winding
number, and

tβ(z) = eiβ(θ−π), θ ≡ arg[0,2π) z. (B2)

Note that, unless β is an integer, tβ
(
ei(θ−θ0)

)
has

a single jump discontinuity at z = eiθ = eiθ0 .
Indeed, tβ(z) = e−iβπeiβ arg z has a jump dis-
continuity on the positions real axis, since arg z
jumps from 2π to 0 as we cross the positions real
axis from Im z < 0 to Im z > 0. Consequently,
tβ
(
ei(θ−θ0)

)
(which is a function of θ) has a jump

discontinuity for θ = θ0 + 2kπ (k ∈ Z), i.e.,
eiθ = eiθ0 .

If the symbol c satisfies Eq. (B1), we de-
note by `n (n ∈ Z) the nth Fourier coefficient
of log b (which is well defined and smooth, from
the smoothness of b and the assumption on its
winding number), and introduce

b±(z) := exp

( ∞∑
n=1

`±nz
±n

)
, z ∈ S1. (B3)

It can be shown that b+ (resp. b−) can be analyt-
ically prolonged to the interior (resp. exterior)
of the unit circle. It also follows from the defi-
nition of b± that on the unit circle we have the
Wiener-Hopf decomposition.

b(z) = e`0b+(z)b−(z), z ∈ S1 (B4)

Let us also set

E[b] := exp

( ∞∑
n=1

n `n`−n

)
, (B5)

and

E :=E[b]

R∏
r=1

b+

(
eiθr
)βr−αr

b−

(
eiθr
)−βr−αr

×
∏

1≤s 6=r≤R

(
1− ei(θs−θr)

)(αr+βr)(βs−αs)

×
R∏
r=1

G (1 + αr + βr)G (1 + αr − βr)
G (1 + 2αr)

,

(B6)
where the Barnes G-function (or double Gamma
function) [18] is the entire function defined by

G(1 + z) =(2π)z/2e−(z+1)(z/2)−γ(z2/2)

×
∞∏
n=1

[(
1 +

z

n

)n
e−z+z

2/2n
]
,

(B7)

and γ = 0.5770836 . . . is the Euler-Mascheroni
constant. The Fisher-Hartwig conjecture states
that if TL is the Toeplitz matrix with symbol
(B1) then when L→∞ we have

det TL = ei`0LME [1 +O (1)] , (B8)

with

M =
R∑
r=1

(
α2
r − β2

r

)
. (B9)

The above conjecture has actually been proven
in Refs. [15] and [16] in the case

αr = 0, |Reβr| <
1

2
, r = 1, . . . , R, (B10)

which, as we shall next see, is the relevant one
for our purposes. Moreover, we shall only need
to consider the case in which b is a constant (i.e.



21

independent of θ). The Fisher-Hartwig conjec-
ture then simplifies considerably, as

`n = `0 δ0n ⇒ b± = E[b] = 1, e`0 = b, (B11)

and thus

det TL = bLLME [1 +O (1)] , (B12)

with

M = −
R∑
r=1

β2
r , (B13)

and

E =
∏

1≤s<r≤R

[
2

∣∣∣∣sin(θr − θs2

)∣∣∣∣]2βrβs

×
R∏
r=1

G(1 + βr)G(1− βr).

(B14)

Note as well that the product of the Barnes func-
tions reduces to

G(1 + z)G(1− z) =e−(1+γ)z2

×
∞∏
n=1

[(
1− z2

n2

)n
ez

2/n

]
(B15)

We shall be mainly interested in the case in
which TL = µ − (2AL − 1), where µ is a spec-
tral parameter and AL is the correlation ma-
trix of a block of L spins. The determinant
of TL is the characteristic polynomial of AL,
DL(µ) ≡ det(µ + 1 − 2AL) = det TL. When
the chain’s dispersion relation is monotonic [12]
in the interval [0, π] (like the one represented in
Fig. 3) we have

(AL)jk =
sin [xc(j − k)]

π(j − k)
=

1

2π

∫ xc

−xc
e−i(j−k)θ dθ

(B16)
Indeed,∫ xc

−xc
e−i(j−k)θ dθ =

∫ xc

−xc
cos [(j − k)θ] dθ

− i
���

���
���

��:0∫ xc

−xc
sin [(j − k)θ] dθ

=
sin [(j − k)θ]

j − k

∣∣∣∣xc
−xc

=2
sin [xc(j − k)]

j − k
= 2π (AL)jk

where xc ∈ [0, π] is the Fermi momentum [11]

xc =
2πkc
N
∈ (0, π), (B17)

with ε(xc) = λ for the dispersion relation ε(x)
and chemical potential λ. For the XX model
ε(x) = 2 cos(x) and xc = arccos(λ/2). The sym-
bol of the Toeplitz matrix AL is hence

f
(
eiθ
)

=

{
1, if − xc < θ < xc,
0, if xc < θ < 2π − xc,

(B18)

and that of TL is thus given by

c
(
eiθ
)

=

{
µ− 1, if − xc < θ < xc,
µ+ 1, if xc < θ < 2π − xc.

(B19)

Note that c has two jump discontinuities on the
unit circle at the points e±ixc . We shall now show
that

c
(
eiθ
)

= b
(
eiθ
)
tβ

(
ei(θ+xc)

)
t−β

(
ei(θ−xc)

)
(B20)

for suitable β and b(z). Indeed, we have

−xc < θ < 2π − xc ⇔ 0 < θ + xc < 2π

so that

tβ

(
ei(θ+xc)

)
= eiβ(θ+xc−π)

On the other hand, if −xc < θ < xc then

0 ≤ 2(π − xc) < θ − xc + 2π < 2π,

and therefore

t−β

(
ei(θ−xc)

)
= e−iβ(θ−xc+π);

while for xc < θ < 2π − xc we have

0 < θ − xc < 2(π − xc) ≤ 2π,

which implies

t−β

(
ei(θ−xc)

)
= e−iβ(θ−xc−π).

Hence

tβ

(
ei(θ+xc)

)
t−β

(
ei(θ−xc)

)
=

{
e2iβ(xc−π), −xc < θ < xc,
e2iβxc , xc < θ < 2π − xc.

(B21)
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In order for Eqs. (B19) and (B20) to hold we
must therefore verify

be2iβ(xc−π) = µ− 1, be2iβxc = µ+ 1, (B22)

or equivalently

e2iβπ =
µ+ 1

µ− 1
, b = (µ+ 1)e−2iβxc . (B23)

These equations admit an infinite number of so-
lutions (β, b) provided that µ 6= ±1. However,
for our purposes we can conveniently choose the
solutions

β =
1

2πi
log

(
µ+ 1

µ− 1

)
, b = (µ+1)

(
µ+ 1

µ− 1

)−xc/π
(B24)

where the complex logarithm is log z := log |z|+
i arg(−π,π] z, and za := ea log z. Let us remark
that b is a non-vanishing constant. It is also
important to observe that if µ ∈ [−1, 1] then

|Reβ| = 1

2π
arg(−π,π]

(
µ+ 1

µ− 1

)
<

1

2
, (B25)

since by definition −π < arg(−π,π] z ≤ π and

arg(−π,π]

(
µ+ 1

µ− 1

)
= π ⇔ µ+ 1

µ− 1
∈ (−∞, 0)

⇔ µ ∈ (−1, 1).
(B26)

The Fisher-Hartwig conjecture can thus be ap-
plied provided that µ lies outside the interval
[−1, 1], with R = 1, α1 = 0, M = −2β2 and

E = (2 sinxc)
−2β2

G(1 + β)2G(1− β)2. (B27)

By Eqs. (B12) and (B24), when L → ∞ the
characteristic polynomial is given by

DL(µ) =(2L sinxc)
−2β2

(µ+ 1)L
(
µ+ 1

µ− 1

)−Lxc/π
×G(1 + β)2G(1− β)2 [1 +O (1)]

(B28)

Appendix C: Simplification of the expression
for Υ0

In this Appendix we shall simplify the for-
mula of Υ0. Let us introduce the function [18]

ψ(z) :=
d

dz
log Γ(z)

= −γ +
∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
,

(C1)

where Γ(z) is the well-known Gamma function.
This function satisfies the recurrence relation

ψ(z + 1) = ψ(z) +
1

z
(C2)

Therefore, we have

∞∑
n=1

(
1

n+ z
− 1

n

)
=
∞∑
n=1

1

n+ z
−
∞∑
n=0

1

n+ 1

=

∞∑
n=0

(
1

n+ z
− 1

n+ 1

)
− 1

z
= −γ − ψ(z)− 1

z

= −γ − ψ(z + 1)
(C3)

Let

f(z) :=

∞∑
n=1

z3

n(n2 − z2)
, (C4)

with z := 1/2 + iW (x). Note that z̄ = 1− z, and
thus

Re f(z) =
1

2

(
f(z) + f(z)

)
=

1

2
(f(z) + f(z̄))

=
1

2
(f(z) + f(1− z))

(C5)

To compute f(z), we make use of the identity

z3

n(n2 − z2)
=
z

2

(
1

n+ z
− 1

n

)
+
z

2

(
1

n− z
− 1

n

)
(C6)

which combined with (C3) implies

f(z) =
z

2
(−γ − ψ(1 + z))

+
z

2
(−γ − ψ(1− z))

=− γz − z

2
(ψ(1 + z) + ψ(1− z))

=− γz − z

2
(ψ(z) + ψ(1− z))− 1

2
,

(C7)
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where at the last step we have made use of the
recurrence relation (C2), and hence

f(z) + f(1− z) = −γ − 1

2
(ψ(z) + ψ(1− z))− 1.

(C8)
Substituting this result into Eq. (86) we obtain

Υ0 =
1

π2

∫ 1

−1

[
− 1

1− x
log

1 + x

2
− 1

1 + x
log

1− x
2

]
×
[
−γ − 1− 1

2
ψ

(
1

2
− iW (x)

)
−1

2
ψ

(
1

2
+ iW (x)

)]
dx

=Υ1 −
1 + γ

3
,

(C9)
with Υ1 given by

Υ1 =− 1

2π2

∫ 1

−1
dx

[
− 1

1− x
log

1 + x

2

− 1

1 + x
log

1− x
2

]
×
[
ψ

(
1

2
− iW (x)

)
+ ψ

(
1

2
+ iW (x)

)]
.

(C10)
We now perform a change of variable using

w =
1

2π
log

(
1 + x

1− x

)
⇔ x = tanh(πw), (C11)

which yields

Υ1 =− 1

π

∫ ∞
−∞

[log (2 cosh(πw))− πw tanh(πw)]

×
[
ψ

(
1

2
− iw

)
+ ψ

(
1

2
+ iw

)]
dw

=− 2

π

∫ ∞
0

dw [log(2 cosh(πw))−πwtanh(πw)]

×
[
ψ

(
1

2
− iw

)
+ ψ

(
1

2
+ iw

)]
dw,

(C12)
where we have taken into account that coshx is
even, that tanhx is odd and that ψ(1+z)+ψ(1−
z) is even by construction. We now note that

log [2 cosh(πw)]− πw tanh(πw)

=

(
1− d

dα

)
log
(
1 + e−2πwα

)∣∣∣∣
α=1

,
(C13)

and that, by definition,

ψ

(
1

2
− iw

)
+ ψ

(
1

2
+ iw

)
=i

d

dw
log

(
Γ(1/2− iw)

Γ(1/2 + iw)

)
.

(C14)

Making use of the following expression for the
logarithm of the Gamma function [18]

log Γ(z) =

∫ ∞
0

[
z − 1− 1− e−(z−1)t

1− e−t

]
e−t

t
dt,

(C15)
we can write

log

(
Γ(1/2− iw)

Γ(1/2 + iw)

)
= −i

∫ ∞
0

[
2we−t − sin(wt)

sinh(t/2)

]
1

t
dt,

(C16)

Therefore Υ1 is given by the double integral

Υ1 =− 2

π

∫ ∞
0

dw

∫ ∞
0

dt

× {log [2 cosh(πw)]− πw tanh(πw)}

×
(

2
e−t

t
− cos(wt)

sinh(t/2)

)
(C17)

The integrals in w can be performed analytically
with Mathematica, namely∫ ∞

0
{log [2 cosh(πw)]− πw tanh(πw)} dw =

π

12
(C18)

and∫ ∞
0
{log [2 cosh(πw)]− πw tanh(πw)} cos(tw) dw

=
π

4t

[
t coth

(
t

2

)
− 2

]
csch

(
t

2

)
=
π cosh(t/2)

4 sinh2(t/2)
− π

2t sinh(t/2)
.

(C19)
We can at last write Υ1 in the form given by Jin
and Korepin [7]

Υ1 = −
∫ ∞

0

[
e−t

3t
+

1

t sinh2(t/2)
− cosh(t/2)

2 sinh3(t/2)

]
dt.

(C20)
Moreover, we can integrate it numerically, yield-
ing Υ1 ' 0.495018.
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have the complexity of matrix multiplication, i.e.
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[27] Note that Eq. (54) is just the dominant term
of the asymptotic approximation. Indeed, the
complete approximation is given by Eq. (57),
and clearly the ratio between its second term,
−(1 − x) log(1 − x), and its fist term, −x log x,
goes to 0 as x → 0. However, this ratio goes
to 0 logarithmically. To give some numbers, let
x = 10−n, so that

x log x

(1− x) log(1− x)
' − log x = n log 10 ' 2.3n .

Then, for the values in Fig. 4 (pc ' 10−5 and
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thus 2.3n ' 9.2; i.e., the second term is more
than 10% of the first one, which is small but
appreciable.

[28] We remark that the correspondence of being
critical (resp. gapped) and having a logarith-
mically divergent (resp. saturing) entropy holds
true for local systems only. There exist gapped
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corresponding to the (approx.) integer kc from
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tanglement entropy for an arbitrary system of
free fermions with translation invariance, whose
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by SL ' 1

3 log(2L) + Υ1, with L = L sin pc.
Let us remark that the constant Υ1 does not
depend on the model, that is, the dependence
of the asymptotic formula on the model is en-
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the additive constant in SL is not necessarily
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